Computation of Nash Equilibria: Two-Player Games

Argyrios Deligkas
Royal Holloway, University of London
argyrios.deligkas@rhul.ac.uk

EASSS 2023

Outline

$>$ Two-player games: The Basics
$>$ Two-player games: Algorithms and Complexity Issues
>Many-player games
>Normal form games
>Polymatrix games

Two-player games: The Basics

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!
Each one can either admit or deny he took it

- If Dewey admits and Huey admits, then Dewey will be suspended for 2 hours
- If Dewey admits and Huey denies, then Dewey will be suspended for 0 hours
- If Dewey denies and Huey admits, then Dewey will be suspended for 3 hours
- If Dewey denies and Huey denies, then Dewey will be suspended for 1 hour
- If Dewey admits and Huey admits, then Huey will be suspended for 2 hours
- If Dewey admits and Huey denies, then Huey will be suspended for 3 hours
- If Dewey denies and Huey admits, then Huey will be suspended for 0 hours
- If Dewey denies and Huey denies, then Huey will be suspended for 1 hour

denies admits

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!

- Each one of them want to minimize their individual suspension time!
- Each one is clever!
- Uncle Scrooge keeps them in separate rooms so they cannot communicate!

What should they choose????

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault.
Dewey and Huey were accused of taking it!

- Each one of them want to minimize their individual suspension time!
- Each one is clever!
- Uncle Scrooge keeps them in separate rooms so they cannot communicate!

What should they choose????

Dewey and Huey play Rock-PaperScissors

> WHAT SHOULD I PLAY??
> Shall I play at random???

- Each one wants to maximize his score!

What should they choose????

Two-Player Games (Bimatrix Games)

- Two players: Row player and Column player

- A set of actions for every player

Row player has actions
Column player has actions

- Payoff matrix for every player for the Row player of size for the Column player of size
- is the payoff the Row player gets when Row player chooses action and

Row player has 3 actions: T, M, B Column player has 2 actions: L, R

- is the payoff the Column player gets when Row player chooses action and Column player chooses action

Two-Player Games - Strategies

- Two players: Row player and Column player
- A set of actions for every player

Row player has actions
Column player has actions

- Payoff matrix for every player for the Row player of size for the Column player of size
- is the payoff the Row player gets when Row player chooses action and Column player chooses action
- is the payoff the Column player gets when Row player chooses action and Column player chooses action

To play the game:

- Row player chooses action
- Column player chooses action

They can choose an action probabilistically!

- Row player chooses his action according to probability distribution ; is the probability he chooses action
- Column player chooses his action according to probability distribution ; is the probability he chooses action
is the strategy of Row player is the strategy of Column player is the strategy profile
is a pure strategy if for some

Two-Player Games - Expected Payoffs

To play the game:

- Row player chooses action
- Column player chooses action

They can choose an action probabilistically!

- Row player chooses his action according
to probability distribution ;
is the probability he chooses action
- Column player chooses his action according to probability distribution ;
is the probability he chooses action
is the strategy of Row player is the strategy of Column player is the strategy profile is a pure strategy if for some

In strategy profile

- The expected payoff of Row player is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{x}_{i} \cdot \boldsymbol{y}_{j} \cdot \boldsymbol{R}_{i j}=\boldsymbol{x}^{T} \boldsymbol{R} \boldsymbol{y}
$$

- The expected payoff of Column player is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{x}_{i} \cdot \boldsymbol{y}_{j} \cdot \boldsymbol{C}_{i j}=\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{y}
$$

Two-Player Games - Payoffs

In strategy profile

- The expected payoff of Row player is

$$
\begin{aligned}
& \sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{y}_{\boldsymbol{j}} \cdot \boldsymbol{R}_{i j}=\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R} \boldsymbol{y} \\
& \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R} \boldsymbol{y}=\sum_{i=1}^{m} \boldsymbol{x}_{\boldsymbol{i}} \sum_{j=1}^{n} \boldsymbol{R}_{i j} \cdot \boldsymbol{y}_{j}=i \sum_{i=1}^{m} \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{R} \boldsymbol{y}_{i} i^{\text {Expect }} \\
& \text { action }
\end{aligned}
$$

- The expected payoff of Column player is

$$
\begin{gathered}
\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{y}_{\boldsymbol{j}} \cdot \boldsymbol{C}_{i j}=\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{C} \boldsymbol{y} \\
\left.\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{y}=\sum_{j=1}^{n} \boldsymbol{y}_{j} \sum_{i=1}^{m} \boldsymbol{C}_{i j} \cdot \boldsymbol{x}_{\boldsymbol{i}}=i \sum_{\boldsymbol{j}=1}^{n} \boldsymbol{y}_{\boldsymbol{j}} \cdot \boldsymbol{C}^{T} \boldsymbol{x}\right)_{\boldsymbol{j}} \\
\text { action }
\end{gathered}
$$

Iwo-Player Games - Best Responses/Supporits
In strategy profile action

- The expected payoff of Row/player is

$$
\boldsymbol{x}^{T} \boldsymbol{R} \boldsymbol{y}=\sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{R y}_{i}
$$

- The expected payoff of Column player is

$$
\begin{aligned}
& \left.\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{y}=\sum_{\boldsymbol{j}=1}^{n} \boldsymbol{y}_{\boldsymbol{j}} \cdot \boldsymbol{C}^{T} \boldsymbol{x}\right)_{\boldsymbol{j}} \\
& \begin{array}{l}
\text { Expected payoff of } \\
\text { action }
\end{array}
\end{aligned}
$$

Regret

- The regret of Row player under is
- The regret of Column player under is

Support

- The support of a strategy is the set of actions played with positive probability
- The support of a strategy is the set of actions played with positive probability

Iwo-Player Games - Best Responses/Supports

Best responses

- Given a strategy for Column player action is a pure best response if
- Given a strategy for Row player action is a pure best response if

Support

- The support of a strategy is the set of actions played with positive probability
- The support of a strategy is the set of actions played with positive probability

Regret

- The regret of Row player under is
- The regret of Column player under is

SIND $X=7, I$

$$
x^{T} C y=\frac{2}{3} \frac{5}{2}+\frac{1}{3} \frac{8}{2}=\frac{18}{6}
$$

Regret for Col:

$$
\begin{aligned}
& \left(x \cdot C^{T}\right)_{1}=3 \cdot \frac{1}{2}+2 \cdot \frac{1}{2}+3 \cdot 0=\frac{5}{2} \\
& \left(x \cdot C^{T}\right)_{2}=2 \cdot \frac{1}{2}+6 \cdot \frac{1}{2}+1 \cdot 0=\frac{8}{2}
\end{aligned}
$$

Two-Player Games - Nash Equilibrium

Best responses

- Given a strategy for Column player action is a pure best response if
- Given a strategy for Row player action is a pure best response if
is a Nash equilibrium of a bimatrix game
if one of the following holds (equivalent definitions)
Both players play a (mixed) best response
is a best response against
is a best response against

The supports of both players contain only pure best responses
$\hat{i} \in \operatorname{supp}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i}=\max _{\boldsymbol{i}}(\boldsymbol{R y})_{i}$
$\boldsymbol{j} \in \operatorname{supp}(\boldsymbol{y}) \Rightarrow\left(\boldsymbol{C}^{T} \boldsymbol{x}\right)_{\hat{\boldsymbol{i}}}=\max _{\boldsymbol{j}}\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}$

$$
\begin{aligned}
& \text { The regret of every player is zero } \\
& \boldsymbol{\operatorname { m a } \boldsymbol { \boldsymbol { x } _ { \boldsymbol { i } } } (\boldsymbol { R y }) _ { \boldsymbol { i } } - \boldsymbol { x } ^ { \boldsymbol { T } } \boldsymbol { R y } = \mathbf { 0 }} \\
& =\mathbf{0}
\end{aligned}
$$

Regret

- The regret of Row player under is
- The regret of Column player under is

At equilibrium no player can improve their payoff by unilaterally changing their strategy

Two-Player Games - Nash Equilibrium

is a Nash equilibrium of a bimatrix game if one of the following holds (equivalent definitions)

Both players play a (mixed) best response
is a best response against
is a best response against

Theorem (Nash)
Every finite game possesses at least one Nash equilibrium
- finite number of players
- finite number of actions for every player

The supports of both players contain only pure best responses
$i \in \operatorname{supp}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i}=\boldsymbol{\operatorname { m a x }} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{\boldsymbol{i}}$
$\dot{j} \in \operatorname{supp}(\boldsymbol{y}) \Rightarrow\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\hat{\boldsymbol{i}}}=\max _{\boldsymbol{j}}\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}$
The regret of every player is zero
$\boldsymbol{m a} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R y}=\mathbf{0}$
$=0$

Two-Player Games - Nash Equilibrium

Theorem (Nash)
Every finite game possesses at least one Nash equilibrium
- finite number of players
-finite number-of actions for every player

```
Consider the two-player game:
- the actions of each player is any number in (0,1)
- the payoff of a player is
    1 if they chose the lower number of the two
    0 if they chose the higher number of the two
```

Is there a Nash equilibrium in the game above?
NO!

Two-Player Games - Example

Two-Player Games - Example

The supports of both players contain only pure best responses
$\hat{i} \in \boldsymbol{\operatorname { s u p p }}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i}=\boldsymbol{\operatorname { m a }} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R} \boldsymbol{y})_{\boldsymbol{i}}$
$j \in \operatorname{supp}(\boldsymbol{y}) \Rightarrow\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\hat{i}}=\max _{\boldsymbol{j}}\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}$

The regret of every player is zero
$\boldsymbol{m a x} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R y}=\mathbf{0}$
$=0$

$$
x^{T} C y=\frac{2}{3} \frac{14}{5}+\frac{1}{3} \frac{14}{5}=\frac{14}{5}
$$

Regret for Col:

	3
0	

$(\boldsymbol{R} \cdot \boldsymbol{y})_{3}=0 \cdot \frac{2}{3}+6 \cdot \frac{1}{3}=\frac{6}{3}$
$\left.x^{T} \cdot C\right)_{1}=3 \cdot \frac{4}{5}+2 \cdot \frac{1}{5}+3 \cdot 0=\frac{14}{5}$
$\left(x^{T} \cdot C\right)_{2}=2 \cdot \frac{4}{5}+6 \cdot \frac{1}{5}+1 \cdot 0=\frac{14}{5}$

Two-Player Games - Example

Best NE for Column
Best NE for Row

Two-Player Games - Approximate NE

is an NE of if
The supports of both players contain only pure best responses
$\hat{i} \in \boldsymbol{\operatorname { s u p p }}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i}=\boldsymbol{m a} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R} \boldsymbol{y})_{\boldsymbol{i}}$
$\dot{i} \in \operatorname{supp}(\boldsymbol{y}) \Rightarrow\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\hat{\boldsymbol{i}}}=\max _{\boldsymbol{j}}\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}$

The supports of both players contain only -best responses
$\hat{i} \in \boldsymbol{\operatorname { s u p p }}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i} \geq \boldsymbol{m a} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{\boldsymbol{i}}-\boldsymbol{\epsilon}$
$\hat{\boldsymbol{j}} \in \operatorname{Supp}(\boldsymbol{y}) \Rightarrow\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\hat{\mathbf{j}}} \geq \max _{\boldsymbol{j}}\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}-\boldsymbol{\epsilon}$
is an NE of if
The regret of every player is zero $\boldsymbol{m a} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R y}=\mathbf{0}$

$$
=0
$$

The regret of every player is at most
$\boldsymbol{\operatorname { m a x }} \boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R} \boldsymbol{y} \leq \boldsymbol{\epsilon}$
$\max _{j}\left(\boldsymbol{C}^{T} \boldsymbol{x}\right)_{j}-\boldsymbol{x}^{T} \boldsymbol{C y} \leq \epsilon$
is an -WSNE
The smaller the the better the approximation!

Two-Player Games - Normalization

is an-Well-Supported NE of if
The supports of both players contain only -best responses
$\hat{\mathbf{i}} \in \operatorname{supp}(\boldsymbol{x}) \Rightarrow(\boldsymbol{R y})_{i \boldsymbol{i}} \geq \boldsymbol{\operatorname { m a } \boldsymbol { x } _ { \boldsymbol { i } }}(\boldsymbol{R y})_{\boldsymbol{i}}-\boldsymbol{\epsilon}$
$\left.\hat{\boldsymbol{j}} \in \operatorname{Supp}(\boldsymbol{y}) \Rightarrow \boldsymbol{C}^{T} \boldsymbol{X}\right)_{\hat{\mathbf{j}}} \geq \boldsymbol{\operatorname { m a } \boldsymbol { X } _ { \boldsymbol { j } }}\left(\boldsymbol{C}^{T} \boldsymbol{X}\right)_{\boldsymbol{j}}-\boldsymbol{\epsilon}$
is an -NE of if

$$
\begin{aligned}
& \text { The regret of every player is at most } \\
& \boldsymbol{\operatorname { m a } \boldsymbol { x } _ { \boldsymbol { i } } (\boldsymbol { R y }) _ { \boldsymbol { i } } - \boldsymbol { x } ^ { \boldsymbol { T } } \boldsymbol { R } \boldsymbol { y } \leq \boldsymbol { \epsilon }} \\
& \boldsymbol{\operatorname { m a } \boldsymbol { x } _ { \boldsymbol { j } } (\boldsymbol { C } ^ { T } \boldsymbol { x }) _ { \boldsymbol { j } } - \boldsymbol { x } ^ { \boldsymbol { T } } \boldsymbol { C } \boldsymbol { y } \leq \boldsymbol { \epsilon }}
\end{aligned}
$$

Two-Player Games - Classes of Games

Symmetric
$\boldsymbol{R}=\boldsymbol{C}^{\boldsymbol{T}}$

	0		1		-1
0		-1		1	
	-1		0		1
1		0		-1	
	1		-1		0
-1		1		0	

Every symmetric two-player game has a symmetric NE, i.e. both players play the same strategy [1]

Every NE yields the same payoff for each of the players

Win-Lose
$R_{i j} \in 0,1$

	0		1
0		0	
	0		0
1		0	
	1		1
0		1	

Coordination

$$
\boldsymbol{R}_{i j}=\boldsymbol{C}_{i j}
$$

[1] Non-cooperative games. Nash

Two-Player Games - Symmetric Games

General Game
Symmetric Game

	3		2
3		3	
	2		6
2		5	

Every NE of the Symmetric Game corresponds to an NE of the original game

So, finding an NE in a symmetric game is hard as finding an NE in an arbitrary game

Two-player games:

 Algorithms and Complexity Issues
Algorithms tor NE - support enumeration

```
(x,y) is an NE
\hat { \imath } \in \operatorname { s u p p } ( x ) \Rightarrow ( R y ) _ { \hat { \imath } } = \operatorname { m a x } _ { i } ( R y ) _ { i }
\hat { \jmath } \in \operatorname { s u p p } ( y ) \Rightarrow ( C ^ { T } x ) _ { \hat { j } } = \operatorname { m a x } _ { j } ( C ^ { T } x ) _ { j }
```

for every in
for every and
for every

For each possible support of Row player and each possible support of Col player check if the linear system above has a feasible solution

for every in for every and
for every

Algorithms for NE - Lemke-Howson

- Moves on best-response polyhedral/polytopes
- Performs pivoting on their edges until a NE is reached
(excellent explanation by von Stengel at Chapter 3 of Algorithmic Game Theory book, available freely online)
- "Fast" in practice
- steps in the worst case [2]
- PSPACE-complete to decide whether Lemke-Howson can find a particular NE [3]

Is there an efficient (i.e. polynomial in the size of the game) algorithm for finding an (approximate) NE?
[2] Hard to Solve Bimatrix games. Savani, von Stengel [3] The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. Goldberg, Papadimitriou, Savani

Complexity of Nash equilibria

Complexity of constrained Nash equilibria

Complexity Crash Course

NP-complete

- YES/NO problems
- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-complete problems
$\max _{\boldsymbol{i}}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{T} \boldsymbol{R y}=0$
$\max _{j}\left(C^{T} x\right)_{j}-x^{T} C y=0$

Problem definition

Is there an $\epsilon-\mathrm{NE}(\mathbf{x}, \mathbf{y})$ such that $\min \left(\mathbf{x}^{T} R \mathbf{y}, \mathbf{x}^{T} C \mathbf{y}\right) \geq u$?
Is there an $\epsilon-\mathrm{NE}(\mathbf{x}, \mathbf{y})$ with $\operatorname{supp}(\mathbf{x}) \subseteq S$?
Are there two ϵ-NE with TV distance $\geq d$?
Is there an ϵ-NE (\mathbf{x}, \mathbf{y}) with $\max _{i} \mathbf{x}_{i} \leq p$?
Is there an ϵ-NE (\mathbf{x}, \mathbf{y}) such that $\mathbf{x}^{T} R \mathbf{y}+\mathbf{x}^{T} C \mathbf{y} \leq v$?
Is there an ϵ-NE (\mathbf{x}, \mathbf{y}) such that $\mathbf{x}^{T} R \mathbf{y} \leq u$?
Is there an $\epsilon-\operatorname{WSNE}(\mathbf{x}, \mathbf{y})$ such that $|\operatorname{supp}(\mathbf{x})|+|\operatorname{supp}(\mathbf{y})| \geq 2 k$?
Is there an $\epsilon-\operatorname{WSNE}(\mathbf{x}, \mathbf{y})$ such that $\min \{|\operatorname{supp}(\mathbf{x})|,|\operatorname{supp}(\mathbf{y})|\} \geq k$?
Is there an $\epsilon-\operatorname{WSNE}(\mathbf{x}, \mathbf{y})$ such that $|\operatorname{supp}(\mathbf{x})| \geq k$?
Is there an ϵ-WSNE (\mathbf{x}, \mathbf{y}) with $S_{R} \subseteq \operatorname{supp}(\mathbf{x})$?

It is NP-hard to decide whether a bimatrix game possesses an exact NE that satisfies any of the constraints above even for symmetric win-lose games [4], [5], [6]
[4] Nash and correlated equilibria: Some complexity considerations. Gilboa, Zemel
[5] New complexity results about Nash equilibria. Conitzer, Sandholm
[6] The complexity of Computational Problems about Nash Equilibria in Symmetric Win-Lose Games. Bilo, Mavronicolas

Complexity Classes - TFNP

TFNP

Complexity Crash Course

NP-complete

- YES/NO problems ${ }^{\bullet}$
- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-cpmplete problems
$\max _{i}(\boldsymbol{R y})_{i}-\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{R} y \leq \boldsymbol{\epsilon}$
$\max _{\boldsymbol{j}}\left(\boldsymbol{C}^{T} \boldsymbol{x}\right)_{j}-\boldsymbol{x}^{T} \boldsymbol{C} y \leq \boldsymbol{\epsilon}, \begin{aligned} & \text { NOT a YES/NO problem! }\end{aligned}$
The orem (Nash)
Every bimatrix game possesses at least one Nash equilibrium

Total NP search problems:

- search : looking for a solution, not just YES or NO
- NP: any solution can be checked efficiently
- total: there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...
- Believed that no TFNP-complete problems exists...

Complexity Classes - PPAD

Complexity Crash Course

NP-complete

- YES/NO problems?
- Verify in poly巾omial time any solution of the given problem

PPAD (Polynomial Parity Argument Directed) [7]
The TFNP landscape

- YES (i.e. total) problems
- End-Of-Line Problem
- Brouwer fixed point

Polynomial-time algorithms are unlikely for PPAD-hard problems

Every bimatrix game possesses at least one Nash equilibrium

[7] On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence. Papadimitriou

Complexity of Nash equilibria

- NASH is PPAD-complete for two-player games [8] It is PPAD-hard even for

NASH is PPAD-hard for 4-player games for [9]

- Sparse games
- NASH is PPAD-complete even for [10] Sparse: every row and column of and has at most 10 nonzero entries.
[8] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng [9] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou
[10] Sparse Games are Hard. Chen, Deng, Teng

Complexity of Nash equilibria: Win-

 Lose- Win-lose games
- NASH is PPAD-complete [11]
- - NASH for even for [12]
- poly-time solvable for very sparse games [13] at most 2 nonzero entries per row/column
- poly-time solvable for "planar" games [14]

Win-Lose

[11] On the complexity of two-player win-lose games. Abbott, Kane, Valiant
[12] The approximation complexity of win-lose games. Chen, Teng, Valiant
[13] Efficient computation of Nash equilibria for very sparse win-lose bimatrix games. Codenotti, Leoncini, Resta
[14] A polynomial time algorithm for finding Nash equilibria in planar Win-Lose games. Addario-Berry, Olver, Vetta

Complexity of Nash equilibria: rank - k

- Rank - games:
- Rank - 0: zero-sum. Poly-time solvable
- FPTAS for constant rank games [15]
- Rank - 1 games: poly-time solvable [16]
- Rank 3: PPAD-hard [17]
- Rank - 2 games? (claimed to be hard, no formal proof known yet)

Complexity of Nash equilibria: Imitation

 games- Imitation Game : is the identity matrix [18]
- PTAS for -WSNE [19]
- PPAD-hard for for any [19]

[18] Imitation games and computation. McLennan, Tourky
[19] Approximate Nash Equilibria of Imitation Games: Algorithms and Complexity. Murhekar, Mehta

Algorithms for -NE

DMP algorithm for 0.5-NE

1. Fix a pure strategy for the Row player
2. Compute a best response for the Column player
3. Compute a best response for the Row player
4. Row player plays equiprobably and Column player plays

- 0.75-NE [20]
- 0.5-NE [21]
- 0.36-NE [22]
- 0.3393-NE [23]
- 1/3-NE [DFM]

TS algorithm is based on "gradient descent". The approximation guarantee is tight [24]
[20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games Kontogiannis, Panagopoulou, Spirakis
[21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
[22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
[23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis
[24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium. Chen, Deng, Huang, Li, Li
DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games.
Deligkas, Fasoulakis, Markakis

Algorithms for -WSNE

- 2/3-WSNE [25]

Algorithm

1. Solve the zero-sum games $(R,-R)$ and ($-C, C$).

- Let $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ be a NE of $(R,-R)$, and let $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ be a NE of $(C,-C)$.
- Let v_{r} be the value secured by \mathbf{x}^{*} in $(R,-R)$, and let v_{c} be the value secured by $\hat{\mathbf{y}}$ in $(-C, C)$. Without loss of generality assume that $v_{c} \leq v_{r}$.

2. If $v_{r} \leq 2 / 3-z$, then return $\left(\hat{\mathbf{x}}, \mathbf{y}^{*}\right)$.
3. If for all $j \in[n]$ it holds that $C_{j}^{T} \mathbf{x}^{*} \leq 2 / 3-z$, then return $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$.
4. Otherwise:

Let j^{+}be a pure best response against \mathbf{x}^{*}. Define:

$$
\begin{aligned}
& S:=\left\{i \in \operatorname{supp}\left(\mathbf{x}^{*}\right): R_{i j^{*}}<1 / 3+z\right\} \\
& B:=\operatorname{supp}\left(\mathbf{x}^{*}\right) \backslash S
\end{aligned}
$$

- 0.6608-WSNE [26]
- 0.6528-WSNE [27]
- 0.5-WSNE for symmetric games [23]
- Define the strategy $\mathbf{x}_{\mathbf{B}}$ as follows. For each $i \in[n]$ we have:

$$
\left(\mathbf{x}_{\mathbf{B}}\right)_{i}= \begin{cases}\frac{1}{\operatorname{Pr}(B)} \cdot \mathbf{x}_{i}^{*} & \text { if } i \in B \\ 0 & \text { otherwise. }\end{cases}
$$

If $\left(\mathbf{x}_{\mathbf{B}}{ }^{T} \cdot C\right)_{j^{*}} \geq \frac{1}{3}+z$, then return $\left(\mathbf{x}_{\mathbf{B}}, j^{*}\right)$.
5. Otherwise:

Let j^{\prime} be a pure best response against $\mathbf{x B}_{\mathbf{B}}$.
If there exists an $i \in \operatorname{supp}\left(\mathbf{x}^{*}\right)$ such that $\left(i, j^{*}\right)$ or $\left(i, j^{\prime}\right)$ is a pure $\left(\frac{2}{3}-z\right)$-WSNE, then return it.
Find a row $b \in B$ such that $R_{b j^{*}}>1-\frac{18 z}{1+3 z}$ and $C_{b j^{\prime}}>1-\frac{18 z}{1+3 z}$
Find a row $s \in S$ such that $C_{s j^{+}}>1-\frac{27 z}{1+3}$ and $R_{s j^{\prime}}>1-\frac{27 z}{1+3 z}$.
Define the row player strategy \mathbf{x}_{mp} and the column player strategy \mathbf{y}_{mp} as follows. For each $i \in[n]$ we have:

KS algorithm for -WSNE

1. Check if there is a pure profile in that is a $2 / 3$-WSNE
2. If there is not, solve the zero sum game and use the computed strategies
[25] Well Supported Approximate Equilibria in Bimatrix Games. Kontogiannis, Spirakis
[26] Approximate Well-Supported Nash Equilibria Below Two-Thirds.
Fearnley, Goldberg, Savani, Sorensen
[27] Distributed Methods for Computing Approximate Equilibria.
Czumaj, Deligkas, Fasoulakis, Fearnley, Jurdzinski, Savani
[28] Approximate Well-Supported Nash Equilibria in Symmetric Games.
Czumaj, Fasoulakis, Jurdzinski
DFM*: A Polynomial-Time Algoritm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis

A QPTAS for -NE

We can find an ϵ-NE in $n^{O\left(\frac{\log n}{\epsilon^{2}}\right)}$ time [29]

Problem description	Problem definition
Large payoffs $u \in(0,1]$	Is there an ϵ-NE (x, y) such that $\min \left(x^{T} R y, x^{T} C y\right) \geq u$?
Small total payoff $v \in[0,2)$	Is there an ϵ-NE (x, y) such that $x^{T} R y+x^{T} C y \leq$ v ?
Small payoff $u \in[0,1)$	Is there an ϵ-NE (x, y) such that $\mathrm{x}^{T} R \mathrm{l} y \leq u$?
Restricted support $S \subset[n]$	Is there an $\epsilon-\mathrm{NE}(\mathrm{x}, \mathrm{y})$ with $\operatorname{supp}(\mathrm{x}) \subseteq S$?
Two ϵ-NE $d \in(0,1]$ apart in Total Variation (TV) distance	Are there two ϵ-NE with TV distance $\geq d$?
Small largest probability $p \in$ $(0,1)$	Is there an ϵ-NE (x, y) with $\max _{i} \mathrm{x}_{i} \leq p$?
Large total support size $k \in[n]$	Is there an ϵ-WSNE (x, y) such that $\|\operatorname{supp}(x)\|+$ $\|\operatorname{supp}(\mathrm{y})\| \geq 2 k$?
Large smallest support size $k \in$ [n]	Is there an ϵ-WSNE (x, y) such that $\min \{\|\operatorname{supp}(x)\|,\|\operatorname{supp}(y)\|\} \geq k ?$
Large support size $k \in[n]$	Is there an ϵ-WSNE (x, y) such that $\|\operatorname{supp}(x)\| \geq$ k ?
Restricted support $S_{R} \subseteq[n]$	VE (x, y) with $S_{R} \subseteq \operatorname{supp}(\mathrm{x})$?

There always exists an ϵ-NE with support size $\log n / \epsilon^{2}$

- Take any pair of strategies (x, y)
- Randomly sample $\log n / \epsilon^{2}$ pure strategies

These problems are NP-hard for exact NE!

- Play the sampled strategies uniformly
- The resulting payoffs will be within ϵ of the originals w.h.p.

This technique also gives a QPTAS for constrained NE problems...

A QP Lower Bounds tor constrained NE

Let $\operatorname{BestSW}(\epsilon)$ be the best social welfare achievable by an ϵ-NE
The problem ϵ-NE δ-SW

- Find an ϵ-NE
- Whose social welfare is at least $\operatorname{BestSW}(\epsilon)-\delta$

We have an $n^{O\left(\frac{\log n}{\epsilon^{2}}\right)}$ time algorithm for ϵ-NE ϵ-SW

Exponential-time hypothesis: 3SAT requires $2^{O(n)}$ time

- Implies every NP-complete problem requires $2 O(\sqrt[c]{n})$ time
- Stronger conjecture than $\mathrm{P} \neq \mathrm{NP}$

A QP Lower Bounds tor constrained NE

If ETH is true

all of these problems require $n^{O(\log n)}$ time when $\epsilon<\frac{1}{8}$ [31]

Problem description	Problem definition
Large payoffs $u \in(0,1]$	Is there an ϵ-NE (x, y) such that $\min \left(x^{T} R y, x^{T} C y\right) \geq u$?
Small total payoff $v \in[0,2)$	Is there an ϵ-NE (x, y) such that $x^{T} R y+x^{T} C y \leq$ v ?
Small payoff $u \in[0,1)$	Is there an ϵ-NE (x, y) such that $\mathrm{x}^{\top} R \mathrm{y} \leq u$?
Restricted support $S \subset[n]$	Is there an ϵ-NE (x, y) with $\operatorname{supp}(\mathrm{x}) \subseteq S$?
Two ϵ-NE $d \in(0,1]$ apart in Total Variation (TV) distance	Are there two ϵ-NE with TV distance $\geq d$?
Small largest probability $p \in$ $(0,1)$	Is there an ϵ-NE (x, y) with $\max _{i} \mathrm{x}_{i} \leq p$?
Large total support size $k \in[n]$	Is there an ϵ-WSNE (x, y) such that $\|\operatorname{supp}(x)\|+$ $\|\operatorname{supp}(\mathrm{y})\| \geq 2 k$?
Large smallest support size $k \in$ $[n]$	Is there an ϵ-WSNE (x, y) such that $\min \{\|\operatorname{supp}(x)\|,\|\operatorname{supp}(y)\|\} \geq k$?
Large support size $k \in[n]$	Is there an ϵ-WSNE (x, y) such that $\|\operatorname{supp}(x)\| \geq$ k ?
Restricted support $S_{R} \subseteq[n]$	Is there an ϵ-WSNE (x, y) with $S_{R} \subseteq \operatorname{supp}(\mathrm{x})$?

Exponential-time hypothesis: 3SAT requires $2^{O(n)}$ time

- Implies every NP-complete problem requires $2 \mathrm{O}(\sqrt[c]{n})$ time
- Stronger conjecture than $\mathrm{P} \neq \mathrm{NP}$
[31] Inapproximability results for constrained approximate Nash equilibria.

A QPTAS for -NE

We can find an ϵ-NE in $n^{O\left(\frac{\log n}{\epsilon^{2}}\right)}$ time

There always exists an ϵ-NE with support size $\log n / \epsilon^{2}$

- Take any pair of strategies (x, y)
- Randomly sample $\log n / \epsilon^{2}$ pure strategies
- Play the sampled strategies uniformly
- The resulting payoffs will be within ϵ of the originals w.h.p.

This is the best we can hope assuming the Exponential Time Hypothesis for PPAD! [32]

The story so far

Given an $\mathrm{n} \times \mathrm{n}$ bimatrix game (R, C), compute an - NE in polynomial time w.r.t. n

[20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games. Kontogiannis, Panagopoulou, Spirakis
[21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
[22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
[23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis
[24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium. Chen, Deng, Huang, Li, Li
DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games.
Deligkas, Fasoulakis, Markakis

The story so far

0
41

Epilogue

$>$ Nash equilibria form the fundamental solution in games
$>$ Hard to compute any of them!

Harder to compute an NE with specific properties!

Many ways to improve the results!
New algorithms for approximate NE
Challenging but important
(and fun) problems
$>$ Better lower bounds
$>$ Identify tractable cases

