Computation of Nash Equilibria: Two-Player Games

Argyrios Deligkas

Royal Holloway, University of London

argyrios.deligkas@rhul.ac.uk

EASSS 2023

Outline

Two-player games: The Basics

Two-player games: Algorithms and Complexity Issues

Many-player games
 Normal form games
 Polymatrix games

Two-player games: The Basics

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault. Dewey and Huey were accused of taking it! Each one can either *admit* or *deny* he took it

denies admits

- If Dewey admits and Huey admits, then Dewey will be suspended for 2 hours
- If Dewey admits and Huey denies, then Dewey will be suspended for 0 hours
- If Dewey denies and Huey admits, then Dewey will be suspended for 3 hours
- If Dewey denies and Huey denies, then Dewey will be suspended for 1 hour

- If Dewey admits and Huey admits, then Huey will be suspended for 2 hours
- If Dewey admits and Huey denies, then Huey will be suspended for 3 hours
- If Dewey denies and Huey admits, then Huey will be suspended for 0 hours
- If Dewey denies and Huey denies, then Huey will be suspended for 1 hour

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault. Dewey and Huey were accused of taking it!

- Each one of them want to minimize their individual suspension time!
- Each one is clever!
- Uncle Scrooge keeps them in separate rooms so they cannot communicate!

What should they choose????

Dewey and Huey face a dilemma

Uncle Scrooge found out that a penny was missing from his vault. Dewey and Huey were accused of taking it!

- Each one of them want to minimize their individual suspension time!
- Each one is clever!
- Uncle Scrooge keeps them in separate rooms so they cannot communicate!

What should they choose????

Dewey and Huey play Rock-Paper-Scissors

- If I play Rock, then Huey will play Paper, so then I will have to play Scissors, but then Huey will play Rock, so then I will have to play Paper, but then Huey will play Scissors, so then I will have to play Rock, **BUT THEN...**

WHAT SHOULD I PLAY?? Shall I play at random???

Dewey

Huey

Each one wants to maximize his score!

What should they choose????

the Column player of size 2 5

R

3

6

2

6

3

2

3

Т

Μ

В

3

Two-Player Games (Bimatrix Games)

- Two players: Row player and Column player
- A set of actions for every player
 Row player has actions
 Column player has actions
- Payoff matrix for every player for the Row player of size for the Column player of size
- is the payoff the Row player gets when Row player chooses action and Column player chooses action
 - is the payoff the Column player gets when Row player chooses action and Column player chooses action

Dewev

Two-Player Games - Strategies

- Two players: Row player and Column player
- A set of actions for every player Row player has actions Column player has actions

•

٠

- Payoff matrix for every player for the Row player of size for the Column player of size
- is the payoff the Row player gets when Row player chooses action and Column player chooses action
- is the payoff the Column player gets when Row player chooses action and Column player chooses action

To play the game:

- Row player chooses action
- Column player chooses action

They can choose an action probabilistically!

- Row player chooses his action according to probability distribution ; is the probability he chooses action
- Column player chooses his action according to probability distribution ;
 is the probability he chooses action

is the strategy of Row player is the strategy of Column player is the strategy profile is a *pure* strategy if for some

Two-Player Games – Expected Payoffs

To play the game:

- Row player chooses action
- Column player chooses action

They can choose an action *probabilistically*!

- Row player chooses his action according to probability distribution ; is the probability he chooses action
- Column player chooses his action according to probability distribution ; is the probability he chooses action

is the strategy of Row player is the strategy of Column player is the strategy profile is a *pure* strategy if for some In strategy profile

The expected payoff of Row player is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i \cdot y_j \cdot R_{ij} = x^T R y$$

The expected payoff of Column player is $\sum_{i=1}^{m} \sum_{j=1}^{n} x_i \cdot y_j \cdot C_{ij} = x^T C y$

Two-Player Games - Payoffs

if

if

Support

<u>Two-Player G</u>ames – Nash Equilibrium

Best responses

- Given a strategy for Column player action is a pure best response if
- Given a strategy for Row player action is a *pure best response* if

Support

- The support of a strategy is the set of actions played with positive probability
- The support of a strategy is the set of actions played with positive probability

Regret

- The regret of Row player under is
- The *regret* of Column player under is

is a Nash equilibrium of a bimatrix game if one of the following holds (equivalent definitions)

Both players play a (mixed) best response

is a best response against

is a best response against

The supports of both players contain only pure best responses

$$\hat{i} \in supp(x) \Rightarrow (Ry)_i = max_i(Ry)_i$$

 $j \in supp(y) \Rightarrow (C^T x)_i = max_j(C^T x)_j$

The regret of every player is zero $max_i(Ry)_i - x^TRy = 0$ = 0

At equilibrium no player can improve their payoff by unilaterally changing their strategy

Two-Player Games – Nash Equilibrium

is a Nash equilibrium of a bimatrix game if one of the following holds (equivalent definitions)

Both players play a (mixed) best response

is a best response against

is a best response against

The supports of both players contain only pure best responses $\hat{i} \in supp(x) \Rightarrow (Ry)_i = max_i(Ry)_i$ $\hat{j} \in supp(y) \Rightarrow (C^T x)_i = max_j(C^T x)_j$

The regret of every player is zero $max_i(Ry)_i - x^T Ry = 0$ = 0 Theorem (Nash)

Every finite game possesses at least one Nash equilibrium

- finite number of players
- finite number of actions for every player

Two-Player Games – Nash Equilibrium

Theorem (Nash)

Every *finite* game possesses at least one Nash equilibrium - finite number of players **- finite number o**f actions for every player

Consider the two-player game:

- the actions of each player is any number in (0,1)
- the payoff of a player is

1 if they chose the lower number of the two 0 if they chose the higher number of the two

Is there a Nash equilibrium in the game above?

NO!

Two-Player Games – Example

Two-Player Games – Approximate NE

is an NE of if

The supports of both players contain only pure best responses $\in supp(x) \Rightarrow (Ry)_i = ma x_i (Ry)_i$ $\in supp(y) \Rightarrow (C^T x)_j = ma x_j (C^T x)_j$

is an -Well-Supported NE of if

The supports of both players contain only -best responses $\mathbf{\hat{a}} \in \mathbf{supp}(\mathbf{x}) \Rightarrow (\mathbf{Ry})_i \ge \mathbf{max}_i (\mathbf{Ry})_i - \mathbf{\epsilon}$ $\mathbf{\hat{j}} \in \mathbf{supp}(\mathbf{y}) \Rightarrow (\mathbf{C}^T \mathbf{x})_i \ge \mathbf{max}_j (\mathbf{C}^T \mathbf{x})_j - \mathbf{\epsilon}$ is an NE of if

The regret of every player is zero $max_i(Ry)_i - x^TRy = 0$ = 0

is an -NE of if

The regret of every player is at most $max_i(Ry)_i - x^T Ry \le \epsilon$ $max_j(C^T x)_j - x^T Cy \le \epsilon$

is an -WSNE

The smaller the the better the approximation!

Algorithms and Complexity of (Approximate) Nash Equilibria

Two-Player Games – Normalization

is an -Well-Supported NE of if

The supports of both players contain only -best responses $\hat{i} \in supp(x) \Rightarrow (Ry)_i \ge max_i(Ry)_i - \epsilon$ $\hat{j} \in supp(y) \Rightarrow (C^T x)_j \ge max_j(C^T x)_j - \epsilon$

is an -NE of if

The regret of every player is at most $ma x_i (Ry)_i - x^T Ry \le \epsilon$ $ma x_j (C^T x)_j - x^T Cy \le \epsilon$

Normalization DOES NOT change the NE

Two-Player Games – Classes of Games

-1

1

0

1

-1

0

0

-1

R = -C

Symmetric $\boldsymbol{R} = \boldsymbol{C}^T$

-1

0

0

-1

1

0

1

0

0

0

1

0

0

1

0

1

0

Coordination

$$\mathbf{R}_{ij} = \mathbf{C}_{ij}$$

[1] Non-cooperative games. Nash

Solvable via LP

Every NE yields the same payoff for each of the players

Every symmetric two-player game has a *symmetric* NE, i.e. both players play the same strategy [1]

Two-Player Games – Symmetric Games

General Game

Symmetric Game $0 \quad C$ $0 \quad R$ $R^T \quad 0$ $C^T \quad 0$

Every NE of the Symmetric Game corresponds to an NE of the original game

So, finding an NE in a symmetric game is hard as finding an NE in an arbitrary game

	0		0		3		2
0		0		3		3	
	0		0		2		6
0		0		2		5	
	3		2		0		0
3		2		0		0	
	3		5		0		0
2		6		0		0	

Two-player games: Algorithms and Complexity Issues

Algorithms for NE – support enumeration

(x,y) is an NE $\hat{\imath} \in supp(x) \Rightarrow (Ry)_{\hat{\imath}} = max_i(Ry)_i$ $\hat{\jmath} \in supp(y) \Rightarrow (C^T x)_{\hat{\jmath}} = max_j(C^T x)_j$

For each possible support of Row player and each possible support of Col player check if the linear system above has a feasible solution

for every in for every and

for every

for every in for every and

for every

Algorithms for NE – Lemke-Howson

- Moves on best-response polyhedral/polytopes
- Performs pivoting on their edges until a NE is reached

(excellent explanation by von Stengel at Chapter 3 of Algorithmic Game Theory book, available freely online)

- "Fast" in practice
- steps in the worst case [2]
- PSPACE-complete to decide whether Lemke-Howson can find a particular NE [3]

Is there an efficient (i.e. polynomial in the size of the game) algorithm for finding an (approximate) NE?

[2] Hard to Solve Bimatrix games. Savani, von Stengel[3] The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. Goldberg, Papadimitriou, Savani

Complexity of Nash equilibria

Complexity Crash Course

- NP-complete
- YES/NO problems
- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-complete problems

 $\max_{i}^{\bullet} (Ry)_{i} - x^{T} Ry \leq \epsilon$ $\max_{j} (C^{T} x)_{j} - x^{T} Cy \leq \epsilon$

NOT a YES/NO problem!

Theorem (Nash)

Every bimatrix game possesses at least one Nash equilibrium

Complexity of constrained Nash equilibria

Complexity Crash Course

NP-complete

- YES/NO problems
- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-complete problems

 $max_i(Ry)_i - x^T Ry = 0$ $max_j(C^T x)_j - x^T Cy = 0$

Problem definition

Is there an ϵ -NE (**x**, **y**) such that min($\mathbf{x}^T R \mathbf{y}, \mathbf{x}^T C \mathbf{y}$) $\geq u$? Is there an ϵ -NE (**x**, **y**) with supp(**x**) \subseteq S? Are there two ϵ -NE with TV distance $\geq d$? Is there an ϵ -NE (**x**, **y**) with max_i $\mathbf{x}_i \leq p$? Is there an ϵ -NE (**x**, **y**) such that $\mathbf{x}^T R \mathbf{y} + \mathbf{x}^T C \mathbf{y} \leq v$? Is there an ϵ -NE (**x**, **y**) such that $\mathbf{x}^T R \mathbf{y} \leq u$? Is there an ϵ -WSNE (**x**, **y**) such that $|\operatorname{supp}(\mathbf{x})| + |\operatorname{supp}(\mathbf{y})| \ge 2k$? Is there an ϵ -WSNE (**x**, **y**) such that min{ $|supp(\mathbf{x})|, |supp(\mathbf{y})|$ } $\geq k$? Is there an ϵ -WSNE (**x**, **y**) such that $|\text{supp}(\mathbf{x})| \ge k$? Is there an ϵ -WSNE (\mathbf{x}, \mathbf{y}) with $S_R \subseteq \text{supp}(\mathbf{x})$?

It is NP-hard to decide whether a bimatrix game possesses an exact NE that satisfies any of the constraints above even for symmetric win-lose games [4], [5], [6]

[4] Nash and correlated equilibria: Some complexity considerations. Gilboa, Zemel
[5] New complexity results about Nash equilibria. Conitzer, Sandholm
[6] The complexity of Computational Problems about Nash Equilibria in Symmetric
Win-Lose Games. Bilo, Mavronicolas

Complexity Classes - TFNP

Complexity Crash Course

NP-complete

- YES/NO problems
- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-complete problems

 $ma \overset{\bullet}{x_{i}} (Ry)_{i} - x^{T} Ry \leq \epsilon$ $ma x_{j} (C^{T} x)_{j} - x^{T} Cy \leq \epsilon$

NOT a YES/NO problem!

Theorem (Nash)

Every bimatrix game possesses at least one Nash equilibrium Total NP search problems:

- <u>search</u>: looking for a solution, not just YES or NO
- <u>NP</u>: any solution can be checked efficiently
- <u>total</u>: there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...
- Believed that no TFNP-complete problems exists...

TFNP

Complexity Classes - PPAD

Complexity Crash Course

NP-complete

- YES/NO problems

- Verify in polynomial time any solution of the given problem

Polynomial-time algorithm is unlikely for NP-complete problems

 $\max_{i}^{\bullet} (Ry)_{i} - x^{T} Ry \leq \epsilon$ $\max_{j} (C^{T} x)_{j} - x^{T} Cy \leq \epsilon$

NOT a YES/NO problem!

Theorem (Nash)

Every bimatrix game possesses at least one Nash equilibrium

PPAD (Polynomial Parity Argument Directed) [7]

- YES (i.e. total) problems
- End-Of-Line Problem
- Brouwer fixed point

Polynomial-time algorithms are unlikely for PPAD-hard problems

[7] On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence. Papadimitriou

Complexity of Nash equilibria

Polynomial-time algorithms are unlikely for PPAD-hard problems

 NASH is PPAD-complete for two-player games [8] It is PPAD-hard even for NASH is PPAD-hard for 4-player games for [9]

• Sparse games

- **NASH** is PPAD-complete even for [10] Sparse: every row and column of and has at most 10 nonzero entries.

[8] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng[9] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou[10] Sparse Games are Hard. Chen, Deng, Teng

Complexity of Nash equilibria: Win-Lose

- Win-lose games
 - NASH is PPAD-complete [11]
 - - NASH for even for [12]
 - poly-time solvable for very sparse games [13] at most 2 nonzero entries per row/column
 - poly-time solvable for "planar" games [14]

Polynomial-time algorithms are unlikely for PPAD-hard problems

- [11] On the complexity of two-player win-lose games. Abbott, Kane, Valiant
- [12] The approximation complexity of win-lose games. Chen, Teng, Valiant
- [13] Efficient computation of Nash equilibria for very sparse win-lose bimatrix games. Codenotti, Leoncini, Resta
- [14] A polynomial time algorithm for finding Nash equilibria in planar Win-Lose games. Addario-Berry, Olver, Vetta

Complexity of Nash equilibria: rank - k

- Rank games:
 - Rank 0: zero-sum. Poly-time solvable
 - FPTAS for constant rank games [15]
 - Rank 1 games: poly-time solvable [16]
 - Rank 3: PPAD-hard [17]
 - Rank 2 games? (claimed to be hard, no formal proof known yet)

Polynomial-time algorithms are unlikely for PPAD-hard problems

[15] Games of fixed rank: a hierarchy of bimatrix games. Kannan, Theobald[16] Fast algorithms for rank-1 bimatrix games. Adsul, Garg, Mehta, Sohoni, von Stengel[17] Constant rank two-player games are PPAD-hard. Mehta

Complexity of Nash equilibria: Imitation games

Polynomial-time algorithms are unlikely for PPAD-hard problems

- Imitation Game : is the identity matrix [18]
 - PTAS for -WSNE [19]
 - PPAD-hard for for any [19]

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

[18] Imitation games and computation. McLennan, Tourky

[19] Approximate Nash Equilibria of Imitation Games: Algorithms and Complexity. Murhekar, Mehta

Algorithms for -NE

- 0.75-NE [20]
- 0.5-NE [21]
- 0.36-NE [22]
- 0.3393-NE [23]
- 1/3-NE [DFM]

DMP algorithm for 0.5-NE

- 1. Fix a pure strategy for the Row player
- 2. Compute a best response for the Column player
- 3. Compute a best response for the Row player
- 4. Row player plays equiprobably and Column player plays

TS algorithm is based on "gradient descent". The approximation guarantee is tight [24]

- [20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games. Kontogiannis, Panagopoulou, Spirakis
- [21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
- [22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
- [23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis
- [24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium. Chen, Deng, Huang, Li, Li
- DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis

Algorithms for -WSNE

- 2/3-WSNE [25]
- 0.6608-WSNE [26]
- 0.6528-WSNE [27]
- 0.5-WSNE for symmetric games [23]
- 0.5-WSNE [DFM*]

KS algorithm for -WSNE

1. Check if there is a pure profile in that is a 2/3-WSNE

2. If there is not, solve the zero sum game and use the computed strategies

1. Solve the zero-sum games (R, -R) and (-C, C). - Let $(\mathbf{x}^*, \mathbf{y}^*)$ be a NE of (R, -R), and let $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ be a NE of (C, -C). - Let v_r be the value secured by \mathbf{x}^* in (R, -R), and let v_c be the value secured by $\hat{\mathbf{y}}$ in (-C, C). Without loss of generality assume that $v_c \leq v_r$. 2. If $v_r < 2/3 - z$, then return $(\hat{\mathbf{x}}, \mathbf{v}^*)$. 3. If for all $j \in [n]$ it holds that $C_j^T \mathbf{x}^* \le 2/3 - z$, then return $(\mathbf{x}^*, \mathbf{y}^*)$. 4. Otherwise: - Let j* be a pure best response against x*. Define: $S := \{i \in \text{supp}(\mathbf{x}^*) : R_{ij} < 1/3 + z\}$ $B := \operatorname{supp}(\mathbf{x}^*) \setminus S$ - Define the strategy $\mathbf{x}_{\mathbf{R}}$ as follows. For each $i \in [n]$ we have: $(\mathbf{x}_{\mathbf{B}})_i = \begin{cases} \frac{1}{\Pr(B)} \cdot \mathbf{x}_i^* & \text{if } i \in B\\ 0 & \text{otherwise.} \end{cases}$ - If $(\mathbf{x}_{\mathbf{B}}^T \cdot C)_{\mathbf{i}^*} \geq \frac{1}{3} + z$, then return $(\mathbf{x}_{\mathbf{B}}, \mathbf{j}^*)$. 5. Otherwise: Let j' be a pure best response against x_B. - If there exists an $i \in \text{supp}(\mathbf{x}^*)$ such that (i, j^*) or (i, j') is a pure $(\frac{2}{7} - z)$ -WSNE, then return it. - Find a row $b \in B$ such that $R_{bj^*} > 1 - \frac{18z}{1+3z}$ and $C_{bj'} > 1 - \frac{18z}{1+3z}$. - Find a row $s \in S$ such that $C_{sj^*} > 1 - \frac{27z}{1+3z}$ and $R_{sj'} > 1 - \frac{27z}{1+3z}$. - Define the row player strategy $\mathbf{x_{mp}}$ and the column player strategy $\mathbf{y_{mp}}$ as follows. For each $i \in [n]$ we have: $\mathbf{x}_{\mathbf{mp}_{i}} = \begin{cases} \frac{1-242}{2-392} & \text{if } i = b, \\ \frac{1-152}{2-392} & \text{if } i = s, \\ 0 & \text{otherwise} \end{cases} \quad \mathbf{y}_{\mathbf{mp}_{i}} = \begin{cases} \frac{1-242}{2-392} & \text{if } i = j^{*}, \\ \frac{1-152}{2-392} & \text{if } i = j^{*}, \\ \frac{1-152}{2-392} & \text{if } i = j^{*}, \end{cases}$ - Return (xmp, ymp).

[25] Well Supported Approximate Equilibria in Bimatrix Games. Kontogiannis, Spirakis

Algorithm

- [26] Approximate Well-Supported Nash Equilibria Below Two-Thirds.
 - Fearnley, Goldberg, Savani, Sorensen
- [27] Distributed Methods for Computing Approximate Equilibria.
 - Czumaj, Deligkas, Fasoulakis, Fearnley, Jurdzinski, Savani
- [28] Approximate Well-Supported Nash Equilibria in Symmetric Games.

```
Czumaj, Fasoulakis, Jurdzinski
```

DFM*: A Polynomial-Time Algoritm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis 37

A QPTAS for -NE

We can find an ϵ -NE in $n^{O\left(\frac{\log n}{\epsilon^2}\right)}$ time [29]

There always exists an ϵ -NE with support size log n/ϵ^2

- Take any pair of strategies (x, y)
- ▶ Randomly sample log n/ϵ^2 pure strategies
- Play the sampled strategies uniformly
- The resulting payoffs will be within ϵ of the originals w.h.p.

This technique also gives a QPTAS for constrained NE problems...

Problem description	Problem definition				
Large payoffs $u \in (0, 1]$	Is there an ϵ -NE (x,y) such that $\min(x^T R y, x^T C y) \ge u$?				
Small total payoff $v \in [0,2)$	Is there an ϵ -NE (x, y) such that $x^T R y + x^T C y \le v$?				
Small payoff $u \in [0, 1)$	Is there an ϵ -NE (x,y) such that $x^T R y \leq u$?				
Restricted support $S \subset [n]$	Is there an ϵ -NE (x,y) with $supp(x) \subseteq S$?				
Two ϵ -NE $d \in (0, 1]$ apart in Total Variation (TV) distance	Are there two ϵ -NE with TV distance $\geq d$?				
Small largest probability $p \in (0,1)$	Is there an ϵ -NE (x, y) with max _i x _i $\leq p$?				
Large total support size $k \in [n]$	Is there an ϵ -WSNE (x, y) such that $ supp(x) + supp(y) \ge 2k$?				
Large smallest support size $k \in [n]$	Is there an ϵ -WSNE (x, y) such that $\min\{ \operatorname{supp}(x) , \operatorname{supp}(y) \} \ge k$?				
Large support size $k \in [n]$	Is there an ϵ -WSNE (x, y) such that $ supp(x) \ge k$?				
Restricted support $S_R \subseteq [n]$	Is there an ϵ -WSNE (x,y) with $S_R \subseteq \operatorname{supp}(x)$?				

[29] Playing large games using simple strategies. Lipton, Markakis, Mehta

These problems are NP-hard for exact NE!

A QP Lower Bounds for constrained -NE

Let BestSW(ϵ) be the best social welfare achievable by an ϵ -NE

The problem ϵ -NE δ -SW

Find an e-NE

▶ Whose social welfare is at least $BestSW(\epsilon) - \delta$

We have an $n^{O\left(\frac{\log n}{\epsilon^2}\right)}$ time algorithm for ϵ -NE ϵ -SW

If ETH is true then ϵ -NE ϵ -SW requires $n^{\text{poly}(\epsilon) \cdot (\log n)^{1-o(1)}}$ time [30]

Exponential-time hypothesis: 3SAT requires $2^{O(n)}$ time

- ▶ Implies every NP-complete problem requires $2^{O(\sqrt[6]{n})}$ time
- ▶ Stronger conjecture than $P \neq NP$

[30] Approximating the best Nash equilibrium in -time breaks the exponential time hypothesis. Braverman, Ko, Weinstein

A QP Lower Bounds for constrained -NE

If ETH is true

all of these problems require $n^{O(\log n)}$ time when $\epsilon < \frac{1}{8}$ [31]

Problem description	Problem definition			
Large payoffs $u \in (0, 1]$	Is there an ϵ -NE (x,y) such that $\min(x^T R y, x^T C y) \ge u$?			
Small total payoff $v \in [0, 2)$	Is there an ϵ -NE (x, y) such that $x^T R y + x^T C y \le v$?			
Small payoff $u \in [0, 1)$	Is there an ϵ -NE (x, y) such that $x^T R y \le u$?			
Restricted support $S \subset [n]$	Is there an ϵ -NE (x, y) with $supp(x) \subseteq S$?			
Two ϵ -NE $d \in (0,1]$ apart in	Are there two ϵ -NE with TV distance $\geq d$?			
Total Variation (TV) distance				
Small largest probability $p \in (0,1)$	Is there an ϵ -NE (x, y) with max _i x _i $\leq p$?			
Large total support size $k \in [n]$	Is there an ϵ -WSNE (x, y) such that $ supp(x) + supp(y) \ge 2k$?			
Large smallest support size $k \in$	Is there an ϵ -WSNE (x,y) such that			
[<i>n</i>]	$\min\{ \mathrm{supp}(x) , \mathrm{supp}(y) \} \geq k?$			
Large support size $k \in [n]$	Is there an $\epsilon ext{-WSNE}(x,y)$ such that $ ext{supp}(x) \geq$			
	k?			
Restricted support $S_R \subseteq [n]$	Is there an ϵ -WSNE (x, y) with $S_R \subseteq \text{supp}(x)$?			

Exponential-time hypothesis: 3SAT requires $2^{O(n)}$ time

▶ Implies every NP-complete problem requires $2^{O(\sqrt[6]{n})}$ time

▶ Stronger conjecture than $P \neq NP$

[31] Inapproximability results for constrained approximate Nash equilibria.

Deligkas, Fearnley, Savani Algorithms and Complexity of (Approximate) Nash Equilibria

A QPTAS for -NE

We can find an ϵ -NE in $n^{O\left(\frac{\log n}{\epsilon^2}\right)}$ time

There always exists an ϵ -NE with support size log n/ϵ^2

- Take any pair of strategies (x, y)
- ▶ Randomly sample log n/ϵ^2 pure strategies
- Play the sampled strategies uniformly
- > The resulting payoffs will be within ϵ of the originals w.h.p.

This is the best we can hope assuming the Exponential Time Hypothesis for PPAD! [32]

TS algorithm [23] (2007)

- Works quite well in practice
- Maybe better analysis is possible?

TS analysis is proven to be tight!! [24]

[20] Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games. Kontogiannis, Panagopoulou, Spirakis

- [21] A Note on Approximate Nash Equilibria. Daskalakis, Mehta, Papadimitriou
- [22] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis
- [23] An Optimization Approach for Approximate Nash Equilibria. Tsaknakis, Spirakis
- [24] On Tightness of the Tsaknakis-Spirakis Algorithm for Approximate Nash Equilibrium. Chen, Deng, Huang, Li, Li

DFM: A Polynomial-Time Algoritm for 1/3-Approximate Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis

- [KS] Well Supported Approximate Equilibria in Bimatrix Games. Kontogiannis, Spirakis
- [FGSS] Approximate Well-Supported Nash Equilibria Below Two-Thirds.
 - Fearnley, Goldberg, Savani, Sorensen
- [CDF+] Distributed Methods for Computing Approximate Equilibria.
 - Czumaj, Deligkas, Fasoulakis, Fearnley, Jurdzinski, Savani
- DFM*: A Polynomial-Time Algoritm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis

Epilogue

 \blacktriangleright Nash equilibria form the fundamental solution in games

Hard to compute any of them!

Harder to compute an NE with specific properties!

