Computation of Nash Equilibria: Multi-Player Games

Themistoklis Melissourgos

University of Essex

EASSS 2023

Outline

□ Normal-form games

- Definitions
- Algorithms and Complexity

Graphical games

- Definitions
- Polymatrix games
 - ✓ Algorithms and Complexity
- Graphical/polymatrix games: Recent tight results

Normal-form games: Definitions

Normal-form games

n players: Action profiles described by an $m_1 imes m_2 imes \cdots imes m_n$ tensor

Input (*n*-player *m*-action game): $n \cdot m^n$ payoff entries

Normal-form games - visualization

S

D

3, <mark>0</mark>, -1

2, **7**, 4

Actions and strategies

n players, $m_1 \times m_2 \times \cdots \times m_n$ game They simultaneously choose actions:

- Player 1 chooses action $i_1 \in [m_1]$:
- Player j chooses action $i_j \in [m_j]$:
- Player n chooses action $i_n \in [m_n]$

They can choose an action *probabilistically*!

- Player *j* ∈ [*n*] chooses his action according to probability distribution *x_j*
 - $\begin{array}{l} \succ \ x_{j,i_j} \text{ is the probability he chooses action } i_j \\ x_{j,1} + x_{j,2} + \ \dots + x_{j,m_j} = 1 \quad ; \ x_{j,i_j} \geq 0 \end{array}$

x_j is the strategy of Player *j*(*x*₁, *x*₂ ..., *x_n*) is the strategy profile *x_j* is an *action* (a.k.a. *pure strategy*) if *x_{i,ii}* = 1 for some *i_j* ∈ [*m_j*]

x _{2,1}	х _{2,2} В	x _{2,3} C	x _{2,4} D
1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	−2, <mark>0</mark> , 1
−1, <mark>1</mark> , 0	1, <mark>2</mark> , 4	-1, <mark>1</mark> , -1	0, <mark>1</mark> , 2
1, <mark>2</mark> , -2	0, 1 , 3	1, -2 , 3	2, <mark>2</mark> , 0
	F	x _{3,1}	
x _{2,1}	х _{2,2} В	x _{2,3} C	x _{2,4} D
3, <mark>1</mark> , 1	2, <mark>1</mark> , 1	0, -1 , 2	-3, 1 , -1
2, -1 , 1	−2, 0 , −2	2, <mark>0</mark> , 1	0, - <mark>3</mark> , 2
-2, <mark>0</mark> , 3	−1, <mark>0</mark> , 2	-1, -1, -2	1, -1, -2
	$x_{2,1}$ A 1, 0, 2 $-1, 1, 0$ 1, 2, -2 $x_{2,1}$ A 3, 1, 1 2, -1, 1 $-2, 0, 3$	$\begin{array}{c} x_{2,1} & x_{2,2} \\ A & B \\ \hline 1,0,2 & 3,-1,2 \\ \hline -1,1,0 & 1,2,4 \\ \hline 1,2,-2 & 0,1,3 \\ \hline x_{2,1} & x_{2,2} \\ A & B \\ \hline 3,1,1 & 2,1,1 \\ \hline 2,-1,1 & -2,0,-2 \\ \hline -2,0,3 & -1,0,2 \end{array}$	$x_{2,1}$ $x_{2,2}$ $x_{2,3}$ ABC1,0,2 $3,-1,2$ $4,2,0$ $-1,1,0$ $1,2,4$ $-1,1,-1$ $1,2,-2$ $0,1,3$ $1,-2,3$ $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ ABC $3,1,1$ $2,1,1$ $0,-1,2$ $2,-1,1$ $-2,0,-2$ $2,0,1$ $-2,0,3$ $-1,0,2$ $-1,-1,$

L x_{3,2}

Actions and strategies

3 players, $m_1 \times m_2 \times m_3$ game They simultaneously choose actions:

- Player 1 chooses action $i_1 \in [m_1]$ $m_1 = 3$
- Player *j* chooses action $i_j \in [m_j]$ $m_2 = 4$
- Player n chooses action $i_n \in [m_n]$ $m_3 = 2$

They can choose an action *probabilistically*!

- Player *j* ∈ [*n*] chooses his action according to probability distribution *x_j*
 - $\begin{array}{l} \succ \ x_{j,i_j} \text{ is the probability he chooses action } i_j \\ x_{j,1} + x_{j,2} + \ \ldots + x_{j,m_j} = 1 \quad ; \ x_{j,i_j} \geq 0 \end{array}$
 - *x_j* is the strategy of Player *j*(*x*₁, *x*₂ ..., *x_n*) is the strategy profile *x_j* is an *action* (a.k.a. *pure strategy*) if *x_{i,ii}* = 1 for some *i_j* ∈ [*m_j*]

	x _{2,1}	х _{2,2} В	x _{2,3} C	x _{2,4} D
x _{1,1} N	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
x _{1,2} M	−1, <mark>1</mark> , 0	1, <mark>2</mark> , 4	−1, 1, −1	0, 1, 2
<i>x</i> _{1,3} s	1, <mark>2</mark> , -2	0, 1 , 3	1, -2 , 3	2, <mark>2</mark> , 0
		F	x _{3,1}	
	X2 1	Xaa	Xaa	r
	A	ж <u>2,2</u> В	C	λ2,4 D
x _{1,1} N	A 3, 1, 1	B 2, 1, 1	C	A 2,4 D −3,1,−1
x _{1,1} N x _{1,2} M	A 3, 1, 1 2, -1, 1	B 2, 1, 1 -2, 0, -2	C 0, -1, 2 2, 0, 1	A 2,4 D -3,1,−1 0,−3,2

n players, $m_1 imes m_2 imes \cdots imes m_n$ game

- Let Player $j \in [n]$ have payoff tensor P_j
- In strategy profile (x₁, x₂, ..., x_n) the expected payoff of Player j is

$$\sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \dots \sum_{i_n=1}^{m_n} x_{1,i_1} \cdot x_{2,i_2} \cdots x_{n,i_n} \cdot P_j(i_1, i_2, \dots, i_n)$$

$$=\langle P_j, x_1, x_2, \dots, x_n \rangle$$

For Player $j \in [n]$ and some $i_j \in [m_j]$: $\langle P_j, x_{-j} \rangle_{i_j} \coloneqq \langle P_j, x_1, x_2, \dots, x_n \rangle_{x_{j,i_j}=1}$ $= \sum_{i_j=1}^{m_j} x_{j,i_j} \left\langle P_j, x_{-j} \rangle_{i_j} \right\rangle_{i_j} partial strategy profile$

,	x _{2,1} A	x _{2,2} B	x _{2,3} C	x _{2,4} D
x _{1,1} N	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	−2, <mark>0</mark> , 1
<i>x</i> _{1,2} M	-1, <mark>1</mark> , 0	1, <mark>2</mark> , 4	-1, <mark>1</mark> , -1	0, <mark>1</mark> , 2
<i>x</i> _{1,3} s	1, <mark>2</mark> , -2	0, 1 , 3	1, - <mark>2</mark> , 3	2, <mark>2</mark> , 0
		F	x _{3.1}	
	x _{2,1} A	х _{2,2} В	x _{2,3}	x _{2,4} D
<i>x</i> _{1,1} N	<i>x</i> _{2,1} A 3, 1, 1	x _{2,2} B 2,1,1	x _{2,3} C	<i>x</i> _{2,4} D −3, 1, −1
x _{1,1} N x _{1,2} M	<i>x</i> _{2,1} A 3,1,1 2,-1,1	<i>x</i> _{2,2} B 2, 1, 1 -2, 0, -2	x _{2,3} C 0,-1,2 2,0,1	x _{2,4} D -3,1,-1 0,-3,2
$x_{1,1}$ N $x_{1,2}$ M $x_{1,3}$ S	x _{2,1} A 3,1,1 2,-1,1 -2,0,3	<i>x</i> _{2,2} B 2,1,1 -2,0,-2 -1,0,2	$x_{2,3}$ C 0,-1,2 2,0,1 -1,-1, -2	$x_{2,4}$ D -3, 1, -1 0, -3, 2 1, -1, -2

•

کے i_i=1

*x*_{2,2} *x*_{2,1} *x*_{2,3} $x_{2,4}$ *n* players, $m_1 \times m_2 \times \cdots \times m_n$ game С Α B D *x*_{1,1 N} **1**, **0**, **2 3**, −**1**, **2 4**, **2**, **0** -2, **0**, **1** Let Player $j \in [n]$ have payoff tensor P_i In strategy profile $(x_1, x_2, ..., x_n)$ the **expected payoff** of Player j is m_j *x*_{1,2} M -1, **1**, **0 1, 2, 4 -1**, **1**, **-1 0**, **1**, **2** Expected payoff of *x*_{1,3} s Player *j* when $\langle P_j, x_{-j} \rangle_{i_j}$ 0, **1**, 3 **1**, **-2**, **3 1**, **2**, −2 2, <mark>2</mark>, 0 x_{j,i_j} playing i_i $H x_{3,1}$ $x_{2,3}$ $x_{2,4}$ *x*_{2,1} $x_{2,2}$ $\langle P_1, x_{-1} \rangle_1$ В Α С D *x*_{1,1 N} **2**, **1**, **1 0**, **-1**, **2** -3, **1**, -1 **3**, **1**, **1** *x*_{1,2} M 2, **-1**, **1** −2, **0**, −2 **2, 0, 1 0**, **-3**, **2** *x*_{1,3} s -1, -1, -2 **−1, 0, 2 −2, 0, 3 1**, **-1**, **-2**

n players, $m_1 imes m_2 imes \cdots imes m_n$ game

• Let Player $j \in [n]$ have payoff tensor P_j • In strategy profile $(x_1, x_2, ..., x_n)$ the **expected payoff** of Player j is $\sum_{i_j=1}^{m_j} x_{j,i_j} \cdot \langle P_j, x_{-j} \rangle_{i_j}$ Expected payoff of Player j when playing i_j

 $\langle P_1, x_{-1} \rangle_1$

	x _{2,1} A	x _{2,2} B	x _{2,3} C	x _{2,4} D
$1 = x_{1,1}$ N	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
$0 = x_{1,2}$ M	-1, <mark>1</mark> , 0	1, <mark>2</mark> , 4	-1, <mark>1</mark> , -1	0, <mark>1</mark> , 2
$0 = x_{1,3}$ s	1, <mark>2</mark> , -2	0, <mark>1</mark> , 3	1, - <mark>2</mark> , 3	2, <mark>2</mark> , 0
			X_{31}	
			J ,1	
	x _{2,1} A	х _{2,2} В	x _{2,3} C	x _{2,4} D
$1 = x_{1,1}$ N	<i>x</i> _{2,1} A 3, 1, 1	x _{2,2} B 2,1,1	x _{2,3} C 0,−1,2	x _{2,4} D -3, 1, -1
$1 = x_{1,1}$ N $0 = x_{1,2}$ M	<i>x</i> _{2,1} A 3,1,1 2,-1,1	<i>x</i> _{2,2} B 2,1,1 -2,0,-2	3,1 <i>x</i> _{2,3} C 0,-1,2 2,0,1	x _{2,4} D -3,1,-1 0,-3,2
$1 = x_{1,1}$ N $0 = x_{1,2}$ M $0 = x_{1,3}$ S	$x_{2,1}$ A 3, 1, 1 2, -1, 1 -2, 0, 3	x _{2,2} B 2,1,1 -2,0,-2 -1,0,2	$x_{2,3}$ C 0,-1,2 2,0,1 -1,-1, -2	$x_{2,4}$ D -3, 1, -1 0, -3, 2 1, -1, -2

 $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $x_{2,4}$ *n* players, $m_1 \times m_2 \times \cdots \times m_n$ game Α С B D 1, **0**, **2** 3, **-1**, **2** $1 = x_{1,1}$ N **4**, **2**, **0** -2, 0, 1• Let Player $j \in [n]$ have payoff tensor P_i In strategy profile $(x_1, x_2, ..., x_n)$ the **expected payoff** of Player j is m_j $0 = x_{1,2}$ M -1, **1**, **0 1**, **2**, **4** -1, 1, -1 0, 1, 2 Expected payoff of $0 = x_{1,3}$ s Player *j* when $\langle P_j, x_{-j} \rangle_{i_j}$ 1, **2**, **-2** 0, **1**, **3 1**, **-2**, **3** 2, <mark>2</mark>, 0 playing i_i н*х*_{3,1} *x*_{2,4} $x_{2,1}$ $x_{2,2}$ $x_{2,3}$ $\langle P_1, x_{-1} \rangle_1 =$ С Α B D $1 \cdot x_{2,1} \cdot x_{3,1} + 3 \cdot x_{2,2} \cdot x_{3,1} + 4 \cdot x_{2,3} \cdot x_{3,1} - 2 \cdot x_{2,4} \cdot x_{3,1}$ $+3 \cdot x_{2,1} \cdot x_{3,2} + 2 \cdot x_{2,2} \cdot x_{3,2} + 0 \cdot x_{2,3} \cdot x_{3,2} - 3 \cdot x_{2,4} \cdot x_{3,2}$ $1 = x_{1,1 \ N}$ **3**, **1**, **1** 2, **1**, **1** 0, -1, 2 -3, 1, -1 $0 = x_{1,2}$ M 2, **-1**, 1 **-**2, **0**, **-**2 **2**, **0**, 1 0, -3, 2 $0 = x_{1,3}$ s $-2, 0, 3 \begin{vmatrix} -1, 0, 2 \\ -2 \end{vmatrix} \begin{vmatrix} -1, -1, \\ -2 \end{vmatrix} \begin{vmatrix} 1, -1, -2 \end{vmatrix}$

n players, $m_1 imes m_2 imes \cdots imes m_n$ game		x _{2,1}	х _{2,2} В	x _{2,3} C	x _{2,4}
• Let Player $j \in [n]$ have payoff tensor P_j	x _{1,1 N}	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
• In strategy profile $(x_1, x_2,, x_n)$ the expected payoff of Player <i>j</i> is <i>m</i> :	<i>x</i> _{1,2} M	-1, 1 , 0	1, <mark>2</mark> , 4	−1, <mark>1</mark> , −1	0, <mark>1</mark> , 2
$\sum_{j=1}^{m_j} x_{j,i_j} \cdot \langle P_j, x_{-j} \rangle_{i_j}$	x _{1,3} s	1, <mark>2</mark> , -2	0, <mark>1</mark> , 3	1, - <mark>2</mark> , 3	2, <mark>2</mark> , 0
$i_{j}=1$ $\langle P_{1}, x_{-1} \rangle_{1} =$ $1 \cdot x_{24} \cdot x_{24} + 3 \cdot x_{24} \cdot x_{24} + 4 \cdot x_{24} \cdot x_{24} - 2 \cdot x_{24} \cdot x_{24}$		x _{2,1} A	⊦ x _{2,2} ₿	x _{3,1} x _{2,3} C	x _{2,4}
$+3 \cdot x_{2,1} \cdot x_{3,2} + 2 \cdot x_{2,2} \cdot x_{3,2} + 0 \cdot x_{2,3} \cdot x_{3,2} - 3 \cdot x_{2,4} \cdot x_{3,2}$	<i>x</i> _{1,1 N}	3, <mark>1</mark> , 1	2, <mark>1</mark> , 1	0, -1 , 2	−3, 1, − 2
$\langle P_{3}, x_{-3} \rangle_2$	<i>x</i> _{1,2} M	2, -1 , 1	−2, 0 , −2	2, <mark>0</mark> , 1	0 , -3 , 2
	<i>x</i> _{1,3} s	-2, 0 , 3	-1, <mark>0</mark> , 2	-1, -1, -2	1, -1, -2

 $x_{3,2}$

n players, $m_1 imes m_2 imes \cdots imes m_n$ game		x _{2,1}	x _{2,2} B	x _{2,3} C	x _{2,4}
• Let Player $j \in [n]$ have payoff tensor P_j	<i>x</i> _{1,1 N}	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
• In strategy profile $(x_1, x_2,, x_n)$ the expected payoff of Player <i>j</i> is <i>m</i> _i Expected payoff of	<i>x</i> _{1,2} M	-1, <mark>1</mark> , 0	1, <mark>2</mark> , 4	-1, 1 , -1	0, 1 , 2
$\sum_{j,i_j} x_{j,i_j} \left\langle \langle P_j, x_{-j} \rangle_{i_j} \right\rangle$	x _{1,3} s	1, <mark>2</mark> , -2	0, 1 , 3	1, <mark>-2</mark> , 3	2, <mark>2</mark> , 0
			F	x _{3,1} =	0
$\langle P_1, x_{-1} \rangle_1 =$ 1 · r_2	_	x _{2,1} A	х _{2,2} В	x _{2,3} C	x _{2,4} D
$+3 \cdot x_{2,1} \cdot x_{3,2} + 2 \cdot x_{2,2} \cdot x_{3,2} + 0 \cdot x_{2,3} \cdot x_{3,2} - 3 \cdot x_{2,4} \cdot x_{3,2}$	x _{1,1 N}	3, <mark>1</mark> , 1	2, <mark>1</mark> , 1	0, -1 , 2	-3, <mark>1</mark> , -1
$\langle P_{3}, x_{-3} \rangle_2$	x _{1,2} M	2, -1 , 1	−2, 0 , −2	2, <mark>0</mark> , 1	0, - <mark>3</mark> , 2
	x _{1,3 S}	-2, 0 , 3	-1, 0 , 2	-1,- 1 , -2	1, -1, -2

 $x_{3,2} = 1$

n players, $m_1 imes m_2 imes \cdots imes m_n$ game		x _{2,1}	<i>х</i> _{2,2} В	x _{2,3} C	x _{2,4} D
• Let Player $j \in [n]$ have payoff tensor P_j	<i>x</i> _{1,1 N}	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
• In strategy profile $(x_1, x_2,, x_n)$ the expected payoff of Player <i>j</i> is	<i>x</i> _{1,2} M	-1, 1 , 0	1, 2, 4	-1, <mark>1</mark> , -1	0, 1, 2
$\sum_{i=1}^{m_j} x_{j,i_j} \cdot \langle P_j, x_{-j} \rangle_{i_j}$	x _{1,3 S}	1, <mark>2</mark> , -2	0, 1 , 3	1, -2 , 3	2, <mark>2</mark> , 0
			Н	x _{3,1} =	0
$\langle P_1, x_{-1} \rangle_1 =$		x _{2,1}	x _{2,2} B	x _{2,3} C	x _{2,4} D
$1 \cdot x_{2,1} \cdot x_{3,1} + 3 \cdot x_{2,2} \cdot x_{3,1} + 4 \cdot x_{2,3} \cdot x_{3,1} - 2 \cdot x_{2,4} \cdot x_{3,1} + 3 \cdot x_{2,1} \cdot x_{3,2} + 2 \cdot x_{2,2} \cdot x_{3,2} + 0 \cdot x_{2,3} \cdot x_{3,2} - 3 \cdot x_{2,4} \cdot x_{3,2}$	x _{1,1 N}	3, <mark>1</mark> , 1	2, 1 , 1	0, -1 , 2	-3, <mark>1</mark> , -1
$\langle \boldsymbol{P}_3, \boldsymbol{x}_{-3} \rangle_2 =$	x _{1,2 M}	2, -1 , 1	−2, <mark>0</mark> , −2	2, <mark>0</mark> , 1	0, -3 , 2
$1 \cdot x_{1,1} \cdot x_{2,1} + 1 \cdot x_{1,1} \cdot x_{2,2} + 2 \cdot x_{1,1} \cdot x_{2,3} - 1 \cdot x_{1,1} \cdot x_{2,4} \\ + 1 \cdot x_{1,2} \cdot x_{2,1} - 2 \cdot x_{1,2} \cdot x_{2,2} + 1 \cdot x_{1,2} \cdot x_{2,3} + 2 \cdot x_{1,2} \cdot x_{2,4}$	x _{1,3} s	-2, 0 , 3	−1, <mark>0</mark> , 2	-1, -1, -2	$\begin{array}{cccc} & x_{2,4} \\ & C & D \\ \end{array}$ $\begin{array}{cccc} & 1, -1 & 0, 1, 2 \\ \hline & -2, 3 & 2, 2, 0 \\ \end{array}$ $\begin{array}{ccccc} & -2, 0, 1 \\ \hline & , 1, -1 & 0, 1, 2 \\ \hline & -2, 3 & 2, 2, 0 \\ \end{array}$ $\begin{array}{ccccc} & 2, 2, 0 \\ \hline & x_{2,3} & x_{2,4} \\ \hline & C & D \\ \hline & -1, 2 & -3, 1, -1 \\ \hline & , 0, 1 & 0, -3, 2 \\ \hline & 1, -1, -2 \\ \end{array}$
$+3 \cdot x_{1,3} \cdot x_{2,1} + 2 \cdot x_{1,3} \cdot x_{2,2} - 2 \cdot x_{1,3} \cdot x_{2,3} - 2 \cdot x_{1,3} \cdot x_{2,4}$				$x_{3,2} =$	1

Support, best responses, and regret

n players, $m_1 imes m_2 imes \cdots imes m_n$ game

Support For some $j \in [n]$, the *support* of a strategy x_j is the subset of its actions played with positive probability

 $supp(x_j) = \left\{ i_j \in [m_j] : x_{j,i_j} > 0 \right\}$

Support, best responses,	and regret	t: exa	amp	le	Yat
Best responses Given a partial strategy profile x_{i} action $\hat{i} \in [m]$ is a pure bast		A	ж <u>2,2</u> В	ж2,3 С	D
response if $\langle P_j, x_{-j} \rangle_{\hat{i}_j} = max_{i_j} \langle P_j, x_{-j} \rangle_{i_j}$	<i>x</i> _{1,1 N}	1, <mark>0</mark> , 2	3, -1 , 2	4, <mark>2</mark> , 0	-2, <mark>0</mark> , 1
Support For some $i \in [n]$ the support of a strategy \mathbf{r}_i is the subset of its actions	<i>х</i> _{1,2 М}	-1, 1, 0	1, <mark>2</mark> , 4	−1, <mark>1</mark> , −1	0, <mark>1</mark> , 2
played with positive probability $supp(x_j) = \{i_j \in [m_j] : x_{j,i_j} > 0\}$	x _{1,3 S}	1, <mark>2</mark> , -2	0, 1 , <mark>3</mark>	1, <mark>-2</mark> , 3	2, <mark>2</mark> , 0
Regret			F	x _{3,1}	
The <i>regret</i> of Player <i>j</i> under a profile $(x_1, x_2,, x_n)$ is $max_{i_j} \langle P_j, x_{-j} \rangle_{i_j} - \langle P_j, x_1, x_2,, x_n \rangle$		x _{2,1} A	x _{2,2} B	x _{2,3} C	x _{2,4} D
	x _{1,1 N}	3, <mark>1</mark> , 1	2, <mark>1</mark> , 1	0, -1, 2	−3, 1 , −1
	<i>x</i> _{1,2} M	2, -1 , 1	−2, 0 , −2	2, <mark>0</mark> , 1	0, - <mark>3</mark> , 2
	<i>x</i> _{1,3} s	-2, <mark>0</mark> , 3	−1, <mark>0</mark> , 2	-1,- 1 , -2	1, <mark>-1</mark> , -2

Nash equilibrium

Nash equilibrium

A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

equivalent to any of:

Best responses Given a partial strategy profile x_{-j} action $\hat{i}_j \in [m_j]$ is a *pure best* response if $\langle P_j, x_{-j} \rangle_{\hat{i}_j} = max_{i_j} \langle P_j, x_{-j} \rangle_{i_j}$

Support

For some $j \in [n]$, the *support* of a strategy x_j is the subset of its actions played with positive probability $supp(x_j) = \{i_j \in [m_j] : x_{j,i_j} > 0\}$

Regret

The *regret* of Player *j* under a profile $(x_1, x_2, ..., x_n)$ is $max_{i_j} \langle P_j, x_{-j} \rangle_{i_j} - \langle P_j, x_1, x_2, ..., x_n \rangle$ A strategy profile $(x_1, x_2, ..., x_n)$ in which every player is best-responding

The **support** of every player $j \in [n]$ contains only **pure best responses**:

 $\widehat{i_j} \in supp(x_j) \implies \langle P_j, x_{-j} \rangle_{\widehat{i_j}} = max_{i_j} \langle P_j, x_{-j} \rangle_{i_j}$

The **regret** of every player $j \in [n]$ is **0**: $max_{i_j} \langle P_j, x_{-j} \rangle_{i_j} - \langle P_j, x_1, x_2, ..., x_n \rangle = 0$

Nash equilibrium - existence

Nash equilibrium

A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

Theorem [Nash, 1951]

Every finite game (finitely many players, finitely many actions per player) has at least one Nash equilibrium

Best responses

Given a partial strategy profile x_{-j} action $\hat{i}_j \in [m_j]$ is a *pure best* response if $\langle P_j, x_{-j} \rangle_{\hat{i}_j} = max_{i_j} \langle P_j, x_{-j} \rangle_{i_j}$

Support

For some $j \in [n]$, the *support* of a strategy x_j is the subset of its actions played with positive probability $supp(x_j) = \{i_j \in [m_j] : x_{j,i_j} > 0\}$

Regret

The *regret* of Player *j* under a profile $(x_1, x_2, ..., x_n)$ is $max_{i_j} \langle P_j, x_{-j} \rangle_{i_j} - \langle P_j, x_1, x_2, ..., x_n \rangle$ A strategy profile $(x_1, x_2, ..., x_n)$ in which every player is best-responding

The **support** of every player $j \in [n]$ contains only **pure best responses**:

 $\widehat{i_j} \in supp(x_j) \implies \langle P_j, x_{-j} \rangle_{\widehat{i_j}} = max_{i_j} \langle P_j, x_{-j} \rangle_{i_j}$

The **regret** of every player $j \in [n]$ is **0**: $max_{i_j} \langle P_j, x_{-j} \rangle_{i_j} - \langle P_j, x_1, x_2, ..., x_n \rangle = 0$

Notions of approximate Nash equilibria

Nash equilibrium

A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

0-WSNE = **0**-NE = (exact) Nash equilibrium ★ Normalization: w.l.o.g. all payoffs in $[0, 1] \longrightarrow \varepsilon \in [0, 1]$

Normal-form games: special families ($n \ge 2$)

• **Zero-sum (constant-sum):** the payoffs in each action profile sum to a fixed number

Symmetric: all players have the same action set, and for every action profile a = (a₁, ..., a_n) and every perturbation π: [n] → [n] we have

$$U_j(a_1, \dots, a_n) = U_{\pi^{-1}(j)}(a_{\pi(1)}, \dots, a_{\pi(n)})$$

✤ Find a symmetric Nash equilibrium (s, s, ..., s)
 (there always exists one in symmetric games [a])

Normal-form games: special families ($n \ge 2$)

• Win-lose: payoffs in {0,1}

• **Coordination:** identical payoff tensors for all players

Normal-form games: Algorithms and Complexity

Computing *pure* vs computing *mixed* Nash equilibria

Pure Nash equilibrium (PNE)

An action profile in which no player can gain more payoff by unilaterally changing her action

- Problem: Given a normal-form game, find a PNE (if it exists) or decide non-existence
 - > What is the complexity?
 - ✓ Poly-time in the input size!
 - For every action profile $(a_1, a_2, ..., a_n)$:
 - Pick j ∈ [n] and check if any of her m − 1 alternatives gives higher payoff: n(m − 1) comparisons for each of the mⁿ profiles

n players: Action profiles described by an $m_1 imes m_2 imes \cdots imes m_n$ tensor

Input (*n*-player *m*-action game): $n \cdot m^n$ payoff entries

We will focus on computing (approximate) mixed Nash equilibria

Hardness results for $n \geq 3$

• Zero-sum (constant-sum): the payoffs in each action profile sum to a fixed number

PPAD-complete

- By reduction from 2-player games: add a "dummy player" that makes payoffs sum to zero
- Recall from Argy's talk: 2-player zero-sum games are poly-time solvable!

Hardness results for $n \geq 3$

 Symmetric: all players have the same action set, and for every action profile a = (a₁, ..., a_n) and every perturbation π: [n] → [n] we have

$$U_j(a_1, \dots, a_n) = U_{\pi^{-1}(j)}(a_{\pi(1)}, \dots, a_{\pi(n)})$$

Find a symmetric Nash equilibrium (s, s, ..., s)
 (there always exists one in symmetric games [a])

> PPAD-complete

 Reduce from previous 3-player (zerosum) game to a 3-player symmetric game [b]

Open problem: What is the complexity of finding *any* (also non-symmetric) Nash equilibrium in a symmetric game?

[a] Non-cooperative games. Nash. 1951

[b] ∃R-Completeness for Decision Versions of Multi-Player (Symmetric) Nash Equilibria. Garg, Mehta, Vazirani, Yazdanbod. 2018

Hardness results for $n \geq 3$

• Win-lose: payoffs in {0,1}

> PPAD-complete

✓ Even 2-player win-lose games are PPADcomplete, for $\varepsilon = 1/poly(m)$ [a] (recall Argy's talk)

Do we have any "good" algorithms? For what ε ?

Algorithms for $n \geq 3$

recall from Argy's talk

Algorithms for NE – support enumeration

(x, y) is an NE iff $\hat{\imath} \in supp(x) \Rightarrow (Ry)_{\hat{\imath}} = max_{\hat{\imath}}(Ry)_{\hat{\imath}}$ $\hat{\jmath} \in supp(y) \Rightarrow (C^{T}x)_{\hat{\jmath}} = max_{\hat{\imath}}(C^{T}x)_{\hat{\jmath}}$

For each possible support *S* of Row player and each possible support *T* of Col player check if the linear system above has a feasible solution

 $\begin{array}{l} (Ry)_i = (Ry)_i \ \text{ for every } i, i \text{ in } S \\ (Ry)_i \geq (Ry)_i \ \text{ for every } i \in S \ \text{and } i \notin S \\ \sum_i x_i = 1 \\ x_i > 0 \ \text{ for every } i \in S \\ x_i = 0 \ \text{ for every } i \notin S \end{array}$

```
(C^T x)_j = (C^T x)_j \text{ for every } i, i \text{ in } T

(C^T x)_j \ge (C^T x)_j \text{ for every } j \in T \text{ and } \hat{j} \notin T

\sum_j y_j = 1

y_j > 0 \text{ for every } j \in T

y_j = 0 \text{ for every } j \notin T
```

Every combination of sets corresponds to a feasibility problem that involves **linear** equations/inequalities

In principle, it can be used for *n*-player games

Every combination of sets corresponds to a feasibility problem that involves multilinear polynomial equations/inequalities of degree n - 1

Algorithms for $n \geq 3$

[b] On a Generalization of the Lemke-Howson Algorithm to Noncooperative N-Person Games. Rosenmuller. 1971

Algorithms for $n \ge 3$: Quasi-PTAS

[c] Settling the complexity of computing approximate two-player Nash equilibria. Rubinstein. 2016

Algorithms for $n \ge 3$: Poly-time

recall from Argy's talk

For 2-player games, there is a poly-time algorithm that finds a $\left(\frac{1}{3} + \delta\right)$ -NE for any $\delta > 0$. [a]

For 2-player games, there is a poly-time algorithm that finds a $\left(\frac{1}{2} + \delta\right)$ -WSNE for any $\delta > 0$. [c]

✤ Open problem: For 3-player games, is there is a poly-time algorithm that finds a ε -WSNE for some "small" $\varepsilon > 0$?

Extension to *n*-player games:

By [b], if we have a poly-time algorithm that finds an ε_k -NE in any k-player game, then we can compute in poly-time an ε_{k+1} -NE for any (k + 1)-player game, where $\varepsilon_{k+1} = \frac{1}{2 - \varepsilon_k}$

3-player games: $\left(\frac{3}{5} + \delta\right)$ -NE 4-player games: $\left(\frac{5}{7} + \delta\right)$ -NE :

[a] A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022

[b] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis. 2010

[c] A Polynomial-Time Algorithm for 1/2-Well-Supported Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022

Hardness of computing constrained Nash equilibria

recall from Argy's talk

Is there an "efficient" algorithm for constrained Nash equilibria?
An algorithm for computing constrained Nash equilibria

[a] Approximating the existential theory of the reals. Deligkas, Fearnley, Melissourgos, Spirakis. 2018

[b] Inapproximability results for constrained approximate Nash equilibria. Deligkas, Fearnley, Savani. 2018

An intermission for exact Nash equilibria

Even for **3-player games**:

- finding an exact NE (i.e. 0-NE) is FIXP-complete [a]
- deciding existence of a **constrained exact NE** is **ETR-complete** [b], [c], [d], [e] even for symmetric games or zero-sum games

- FIXP contains the Sum-Of-Squares problem: not even known to be in NP [a]
- \succ NP ⊆ **ETR** ⊆ PSPACE [f]

Still, as soon as we relax to ε -NE, the previous QPTAS applies!

[a] On the Complexity of Nash Equilibria and Other Fixed Points. Etessami, Yannakakis. 2010

[b] Fixed points, Nash equilibria, and the existential theory of the reals. Schaefer, Štefankovic. 2017

[c] ∃R-Completeness for Decision Versions of Multi-Player (Symmetric) Nash Equilibria. Garg, Mehta, Vazirani, Yazdanbod. 2018

[d] ETR-complete decision problems about (symmetric) Nash equilibria in (symmetric) multi-player games. Bilò, Mavronicolas. 2017

[e] On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria. Berthelsen, Hansen. 2022

[f] Some algebraic and geometric computations in PSPACE. Canny. 1988

Graphical games: Definitions

Graphical games [a]

Directed graph G = (V, E)

- *V*: player set $\longrightarrow |V| = n$
- *E*: captures interactions

Player $j \in [n]$ participates in game with her in-neighbours

Graphical games [a]

Directed graph G = (V, E)

- V: player set $\longrightarrow |V| = n$
- *E*: captures interactions

Player $j \in [n]$ participates in game with her in-neighbours

(succinct representation)

[a] Graphical models for game theory. Kearns, Littman, Singh. 2001

Class of graphical games: polymatrix [a]

Undirected graph G = (V, E)

- *V*: player set $\longrightarrow |V| = n$
- *E*: captures **pairwise** interactions

Player $j \in [n]$ participates in bimatrix games, one with each of her neighbours

Class of graphical games: polymatrix [a]

Undirected graph G = (V, E)

- *V*: player set $\longrightarrow |V| = n$
- *E*: captures **pairwise** interactions

Player $j \in [n]$ participates in bimatrix games, one with each of her neighbours

• *j*'s payoff: sum of bimatrix games payoffs

Input (*m*-action, *d*-degree): $n \cdot d \cdot m^2$ payoff entries

(succinct representation)

Polymatrix games: Algorithms and Complexity

• Polymatrix games:

➢ PPAD-complete [a], [b], [c]
END-OF-LINE ≤_p DISCRETE-BROUWER ≤_p GENERALIZED-CIRCUIT ≤_p
≤_p ε-WSNE-POLYMATRIX ≤_p ε-NE-POLYMATRIX ≤_p 2-NASH

In fact: $\checkmark \epsilon = 1/\exp(N)$ [a]

$$\boldsymbol{\varepsilon} = 1/\text{poly}(N)$$
 [b]

- $\checkmark \epsilon = \text{const}$ (of the order 10⁻⁸) [c]
 - \circ even for 2-action, degree-3, bipartite graphs

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

• Polymatrix games:

PPAD-complete [a], [b], [c]
END-OF-LINE ≤_p DISCRETE-BROUWER ≤_p GENERALIZED-CIRCUIT ≤_p
 ≤_p ε-WSNE-POLYMATRIX ≤_p ε-NE-POLYMATRIX ≤_p 2-NASH

In fact: $\checkmark \epsilon = 1/\exp(N)$ [a] $\checkmark \epsilon = 1/poly(N)$ [b] $\checkmark \epsilon = const$ (of the order 10^{-8}) [c] \circ even for 2-action, degree-3, bipartite graphs

• Graphical games:

> **PPAD-complete:** poly-time reduction since actions and degree are constant

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008
[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009
[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

• Finding an NE in polymatrix games with zero-sum and coordination games on the edges is PPAD-complete [a]

-3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 3
 -3, 4
 -3, 4
 -3, 5
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -3, 6
 -4, 6
 -4, 6
 -4, 6
 -4, 6
 -4, 6
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 -5, 7
 <li

Group-wise zero-sum polymatrix games

> Partition the players into groups

- Group-wise zero-sum games are PPAD-complete even with three groups of players [a]
- ✤ Open problem: Group-wise zero-sum with two groups?

Coordination-only polymatrix games [a]

Find a pure Nash equilibrim: PLS-complete

➢ Find a mixed Nash equilibrim: in PLS ∩ PPAD

Open problem: Complexity of (mixed) NE

Hardness results: constrained NE in polymatrix

It is NP-complete to decide whether there is a strategy profile with sum of payoffs u even in polymatrix games with:

- degree 3, bipartite, planar graph
- at most 3 actions per player [a]

For any $\varepsilon \in [0,1]$, it is NP-complete to decide whether a polymatrix game has an ε -NE with sum of payoffs \boldsymbol{u} [a]

For any $\varepsilon \in (0,1)$, it is NP-complete to decide whether a polymatrix game possesses a constrained ε -WSNE. This holds even for polymatrix games with:

- degree 3, bipartite, planar graph
- at most 7 actions per player [a]

[a] Computing Constrained Approximate Equilibria in Polymatrix Games. Deligkas, Fearnley, Savani. 2017

Algorithms for polymatrix

Graphical/polymatrix games: Recent tight results

A new tool to show PPAD-hardness

The **Pure-Circuit** problem [a]:

Input: A Boolean circuit, with a twist:

- The circuit can have **cycles**
- Nodes take values in $\{0, 1, \bot\}$, instead of just $\{0, 1\}$
- In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Goal: Assign a value (in $\{0,1, \bot\}$) to each node, such that all gates are "**satisfied**"

Pure-Circuit is PPAD-complete [a]

[a] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

AND gate:

(with robustness!)

PURIFY gate:

PURIFY gate:

Pure-Circuit gates:

1. The circuit can have cycles

1. The circuit can have cycles

1. The circuit can have cycles

Stronger hardness results for ε -WSNE in polymatrix

• Polymatrix games:

PPAD-complete

GENERALIZED-CIRCUIT $\leq_{p} \varepsilon$ -WSNE-POLYMATRIX

PURE-CIRCUIT $\leq_p \epsilon$ -WSNE-POLYMATRIX

```
✓ ε = 1/exp(N) [a]
✓ ε = 1/poly(N) [b]
✓ ε = const (of the order 10<sup>-8</sup>) [c]
○ even for 2-action polymatrix on bipartite graphs
✓ ε < 1/3 [d]</li>
✓ ven for 2-action, degree-3, bipartite graphs
```

Idea:

- replace each vertex of the Pure-Circuit graph by a player
- The player has 2 actions zero, one and his payoffs simulate the function of the corresponding gates
- zero = 0, one = 1, mix = \perp

- [a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008
- [b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009
- [c] Inapproximability of Nash Equilibrium. Rubinstein. 2014
- [d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

A simple algorithm for 1/3-WSNE in 2-action polymatrix

1/3-WSNE algorithm for 2-action polymatrix games [a]:

- 1. Find a player such that one of its two actions is always a 1/3-best-response (no matter what the other players play). Fix the player's strategy to that action, and remove the player from the game.
- 2. Repeat Step 1 until no such player exists anymore.
- 3. For the remaining players, have them mix uniformly between their two actions, i.e., have them play $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- \rightarrow Can show that this always yields a 1/3-WSNE (by a simple direct computation)

PPAD/P dichotomy at $\varepsilon = 1/3$

Open problem: At what ε is there a dichotomy for
3-action polymatrix ε-WSNE? What about more actions?

[a] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

Stronger hardness results for ε -NE in polymatrix

• Polymatrix games:

> PPAD-complete

```
GENERALIZED-CIRCUIT \leq_p \epsilon-NE-POLYMATRIX
```

PURE-CIRCUIT $\leq_p \epsilon$ -NE-POLYMATRIX

```
✓ ε = 1/exp(N) [a]
✓ ε = 1/poly(N) [b]
✓ ε = const (of the order 10<sup>-8</sup>) [c]
o even for 2-action polymatrix on bipartite graphs
✓ ε < 0.088 [d]</li>
o even for 2-action, degree-3, bipartite graphs
```

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

A simple algorithm for 1/5-NE in 2-action polymatrix

1/5-NE algorithm for 2-action polymatrix games:

- 1. Find a player such that one of its two actions is always a **1/5-best-response** (no matter what the other players play). Fix the player's strategy to that action, and remove the player from the game.
- 2. Repeat Step 1 until no such player exists anymore.
- 3. For the remaining players, have them mix uniformly between their two actions, i.e., have them play $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- \rightarrow Can show that this always yields a 1/5-NE (by a simple direct computation)

There is a gap in ε : 0.088 – 0.2

Open problem: Can we close this gap?

Tight hardness results for ε -WSNE / ε -NE in graphical

• Graphical games:

> PPAD-complete

Discussion

Close the gaps of approximability-inapproximability

Find new meaningful classes of instances that admit "efficient" algorithms

Thank you!