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Normal-form games:
Definitions



Normal-form games

𝟐 × 𝟐 × 𝟐 𝒎𝟏 × 𝒎𝟐 × 𝒎𝟑

3 players:

𝒏 players:          Action profiles described by an 𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏 tensor

Input (𝒏-player 𝒎-action game):          𝒏 ⋅ 𝒎𝒏 payoff entries      

𝑎1,1 𝑎1,2

𝑎2,1

𝑎2,2𝑎3,1

𝑎3,2

player 1

player 2
player 3



Normal-form games - visualization

player 1

player 2
player 3

3 players:

𝑎1,1 𝑎1,2

𝑎2,1

𝑎2,2𝑎3,1

𝑎3,2

𝟐 × 𝟐 × 𝟐



Actions and strategies

➢ 𝒙𝒋 is the strategy of Player 𝑗

➢ (𝒙𝟏, 𝒙𝟐 … , 𝒙𝒏) is the strategy profile
➢ 𝒙𝒋 is an action (a.k.a. pure strategy) if 

𝒙𝒋,𝒊𝒋
= 𝟏 for some 𝒊𝒋 ∈ [𝒎𝒋]

𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game
They simultaneously choose actions:
• Player 1 chooses action 𝒊𝟏 ∈ 𝒎𝟏

            ⋮
• Player 𝑗 chooses action 𝒊𝒋 ∈ [𝒎𝒋]

 ⋮
• Player 𝑛 chooses action 𝒊𝒏 ∈ [𝒎𝒏]

They can choose an action probabilistically!
• Player 𝒋 ∈ [𝒏] chooses his action according

to probability distribution 𝒙𝒋 

➢ 𝒙𝒋,𝒊𝒋
 is the probability he chooses action 𝒊𝒋

𝒙𝒋,𝟏 + 𝒙𝒋,𝟐 +  … + 𝒙𝒋,𝒎𝒋
= 𝟏 ; 𝒙𝒋,𝒊𝒋

≥ 𝟎

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐



Actions and strategies

➢ 𝒙𝒋 is the strategy of Player 𝑗

➢ (𝒙𝟏, 𝒙𝟐 … , 𝒙𝒏) is the strategy profile
➢ 𝒙𝒋 is an action (a.k.a. pure strategy) if 

𝒙𝒋,𝒊𝒋
= 𝟏 for some 𝒊𝒋 ∈ [𝒎𝒋]

𝟑 players,    𝒎𝟏 × 𝒎𝟐 × 𝒎𝟑  game
They simultaneously choose actions:
• Player 1 chooses action 𝒊𝟏 ∈ 𝒎𝟏

            ⋮
• Player 𝑗 chooses action 𝒊𝒋 ∈ [𝒎𝒋]

 ⋮
• Player 𝑛 chooses action 𝒊𝒏 ∈ [𝒎𝒏]

They can choose an action probabilistically!
• Player 𝒋 ∈ [𝒏] chooses his action according

to probability distribution 𝒙𝒋 

➢ 𝒙𝒋,𝒊𝒋
 is the probability he chooses action 𝒊𝒋

𝒙𝒋,𝟏 + 𝒙𝒋,𝟐 +  … + 𝒙𝒋,𝒎𝒋
= 𝟏 ; 𝒙𝒋,𝒊𝒋

≥ 𝟎

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝒎𝟏 = 𝟑

𝒎𝟐 = 𝟒

𝒎𝟑 = 𝟐



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

= 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

෍

𝒊𝟏=𝟏

𝒎𝟏

෍

𝒊𝟐=𝟏

𝒎𝟐

… ෍

𝒊𝒏=𝟏

𝒎𝒏

𝒙𝟏,𝒊𝟏
⋅ 𝒙𝟐,𝒊𝟐

⋯ 𝒙𝒏,𝒊𝒏
⋅ 𝑷𝒋 𝒊𝟏, 𝒊𝟐, … , 𝒊𝒏

=  ෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

For Player 𝑗 ∈ 𝑛  and some 𝑖𝑗 ∈ [𝑚𝑗] :

𝑷𝒋, 𝒙−𝒋 𝒊𝒋
≔ 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 𝒙𝒋,𝒊𝒋

=𝟏

partial 
strategy 
profile



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝑷𝟏, 𝒙−𝟏 𝟏



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟎 = 𝒙𝟏,𝟐 

𝟎 = 𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

𝟎 = 𝒙𝟏,𝟐 

𝟎 = 𝒙𝟏,𝟑 

𝑷𝟏, 𝒙−𝟏 𝟏

𝟏 = 𝒙𝟏,𝟏 

𝟏 = 𝒙𝟏,𝟏 



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟏 = 𝒙𝟏,𝟏 

𝟎 = 𝒙𝟏,𝟐 

𝟎 = 𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

𝑷𝟏, 𝒙−𝟏 𝟏 =
 𝟏 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟏 + 𝟑 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟏 + 𝟒 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟏 − 𝟐 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟏

+𝟑 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟐 + 𝟐 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟐 + 𝟎 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟐 − 𝟑 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟐 𝟏 = 𝒙𝟏,𝟏 

𝟎 = 𝒙𝟏,𝟐 

𝟎 = 𝒙𝟏,𝟑 



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

𝑷𝟏, 𝒙−𝟏 𝟏 =
 𝟏 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟏 + 𝟑 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟏 + 𝟒 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟏 − 𝟐 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟏

+𝟑 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟐 + 𝟐 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟐 + 𝟎 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟐 − 𝟑 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟐

⋮
𝑷𝟑, 𝒙−𝟑 𝟐

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏 = 𝟎

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐 = 𝟏

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

𝑷𝟏, 𝒙−𝟏 𝟏 =
 𝟏 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟏 + 𝟑 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟏 + 𝟒 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟏 − 𝟐 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟏

+𝟑 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟐 + 𝟐 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟐 + 𝟎 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟐 − 𝟑 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟐

⋮
𝑷𝟑, 𝒙−𝟑 𝟐

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 



Expected payoffs
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

𝑷𝟏, 𝒙−𝟏 𝟏 =
 𝟏 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟏 + 𝟑 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟏 + 𝟒 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟏 − 𝟐 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟏

+𝟑 ⋅ 𝒙𝟐,𝟏 ⋅ 𝒙𝟑,𝟐 + 𝟐 ⋅ 𝒙𝟐,𝟐 ⋅ 𝒙𝟑,𝟐 + 𝟎 ⋅ 𝒙𝟐,𝟑 ⋅ 𝒙𝟑,𝟐 − 𝟑 ⋅ 𝒙𝟐,𝟒 ⋅ 𝒙𝟑,𝟐

⋮
𝑷𝟑, 𝒙−𝟑 𝟐 =

 𝟏 ⋅ 𝒙𝟏,𝟏 ⋅ 𝒙𝟐,𝟏 + 𝟏 ⋅ 𝒙𝟏,𝟏 ⋅ 𝒙𝟐,𝟐 + 𝟐 ⋅ 𝒙𝟏,𝟏 ⋅ 𝒙𝟐,𝟑 − 𝟏 ⋅ 𝒙𝟏,𝟏 ⋅ 𝒙𝟐,𝟒

+𝟏 ⋅ 𝒙𝟏,𝟐 ⋅ 𝒙𝟐,𝟏 − 𝟐 ⋅ 𝒙𝟏,𝟐 ⋅ 𝒙𝟐,𝟐 + 𝟏 ⋅ 𝒙𝟏,𝟐 ⋅ 𝒙𝟐,𝟑 + 𝟐 ⋅ 𝒙𝟏,𝟐 ⋅ 𝒙𝟐,𝟒

+𝟑 ⋅ 𝒙𝟏,𝟑 ⋅ 𝒙𝟐,𝟏 + 𝟐 ⋅ 𝒙𝟏,𝟑 ⋅ 𝒙𝟐,𝟐 − 𝟐 ⋅ 𝒙𝟏,𝟑 ⋅ 𝒙𝟐,𝟑 − 𝟐 ⋅ 𝒙𝟏,𝟑 ⋅ 𝒙𝟐,𝟒

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏 = 𝟎

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟐 = 𝟏

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 



Support, best responses, and regret
𝒏 players,    𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏  game

• Let Player 𝑗 ∈ [𝑛] have payoff tensor 𝑷𝒋 

• In strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) the expected 
payoff of Player 𝑗 is

෍

𝒊𝒋=𝟏

𝒎𝒋

𝒙𝒋,𝒊𝒋
⋅ 𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Expected payoff of 
Player 𝑗 when 

playing 𝑖𝑗

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is 

a pure best response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the 

subset of its actions played with positive probability

𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 



Support, best responses, and regret: example
Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 

𝒙𝟑,𝟏

𝒙𝟑,𝟐

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟏,𝟏 

𝒙𝟏,𝟐 

𝒙𝟏,𝟑 

𝒙𝟐,𝟏      𝒙𝟐,𝟐        𝒙𝟐,𝟑      𝒙𝟐,𝟒 
Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 



Support, best responses, and regret: example
A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝟏

𝟎

𝟎

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

𝟏

𝟎

𝟎

𝑷𝟏, 𝒙−𝟏 𝑵 = 𝟐, 𝑷𝟏, 𝒙−𝟏 𝑴 = 𝟏/𝟐, 𝑷𝟏, 𝒙−𝟏 𝑺 = −𝟏/𝟒

𝑷𝟐, 𝒙−𝟐 𝑨 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑩 = 𝟎, 𝑷𝟐, 𝒙−𝟐 𝑪 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑫 = 𝟏/𝟐

𝑷𝟑, 𝒙−𝟑 𝑯 = 𝟏, 𝑷𝟑, 𝒙−𝟑 𝑳 = 𝟑/𝟐

𝒔𝒖𝒑𝒑 𝒙𝟏 = 𝑵 , 𝒔𝒖𝒑𝒑 𝒙𝟐 = 𝑨, 𝑪 , 𝒔𝒖𝒑𝒑 𝒙𝟑 = 𝑯, 𝑳

Regret of Pl.1 = 𝟐 − 𝟐 = 𝟎,   Regret of Pl.2 = 𝟏/𝟐 − 𝟏/𝟐 = 𝟎,   Regret of Pl.3 = 𝟑/𝟐 − 𝟓/𝟒 = 𝟏/𝟒

𝑷𝟏, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 = 𝟐 ⋅ 𝟏 + 𝟏/𝟐 ⋅ 𝟎 − 𝟏/𝟐 ⋅ 𝟎 = 𝟐

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 



Support, best responses, and regret: example
A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝟏

𝟎

𝟎

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

𝟏

𝟎

𝟎

𝑷𝟏, 𝒙−𝟏 𝑵 = 𝟐, 𝑷𝟏, 𝒙−𝟏 𝑴 = 𝟏/𝟐, 𝑷𝟏, 𝒙−𝟏 𝑺 = −𝟏/𝟒

𝑷𝟐, 𝒙−𝟐 𝑨 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑩 = 𝟎, 𝑷𝟐, 𝒙−𝟐 𝑪 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑫 = 𝟏/𝟐

𝑷𝟑, 𝒙−𝟑 𝑯 = 𝟏, 𝑷𝟑, 𝒙−𝟑 𝑳 = 𝟑/𝟐

𝒔𝒖𝒑𝒑 𝒙𝟏 = 𝑵 , 𝒔𝒖𝒑𝒑 𝒙𝟐 = 𝑨, 𝑪 , 𝒔𝒖𝒑𝒑 𝒙𝟑 = 𝑯, 𝑳

Regret of Pl.1 = 𝟐 − 𝟐 = 𝟎,   Regret of Pl.2 = 𝟏/𝟐 − 𝟏/𝟐 = 𝟎,   Regret of Pl.3 = 𝟑/𝟐 − 𝟓/𝟒 = 𝟏/𝟒

𝑷𝟐, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 = 𝟏/𝟐 ⋅ 𝟏/𝟐 + 𝟎 ⋅ 𝟎 + 𝟏/𝟐 ⋅ 𝟏/𝟐 + 𝟎 ⋅ 𝟏/𝟐 = 𝟏/𝟐

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 



Support, best responses, and regret: example
A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝟏

𝟎

𝟎

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

𝟏

𝟎

𝟎

𝑷𝟏, 𝒙−𝟏 𝑵 = 𝟐, 𝑷𝟏, 𝒙−𝟏 𝑴 = 𝟏/𝟐, 𝑷𝟏, 𝒙−𝟏 𝑺 = −𝟏/𝟒

𝑷𝟐, 𝒙−𝟐 𝑨 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑩 = 𝟎, 𝑷𝟐, 𝒙−𝟐 𝑪 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑫 = 𝟏/𝟐

𝑷𝟑, 𝒙−𝟑 𝑯 = 𝟏, 𝑷𝟑, 𝒙−𝟑 𝑳 = 𝟑/𝟐

𝒔𝒖𝒑𝒑 𝒙𝟏 = 𝑵 , 𝒔𝒖𝒑𝒑 𝒙𝟐 = 𝑨, 𝑪 , 𝒔𝒖𝒑𝒑 𝒙𝟑 = 𝑯, 𝑳

Regret of Pl.1 = 𝟐 − 𝟐 = 𝟎,   Regret of Pl.2 = 𝟏/𝟐 − 𝟏/𝟐 = 𝟎,   Regret of Pl.3 = 𝟑/𝟐 − 𝟓/𝟒 = 𝟏/𝟒

𝑷𝟐, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 = 𝟏/𝟐 ⋅ 𝟏 + 𝟏/𝟐 ⋅ 𝟑/𝟐 = 𝟓/𝟒

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 



Nash equilibrium

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Nash equilibrium
A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

A strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in which every player is 
best-responding

The support of every player 𝑗 ∈ [𝑛] contains only pure 
best responses:

෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  
 

𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 

 

equivalent to any of: 

The regret of every player 𝑗 ∈ [𝑛] is 𝟎:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 = 𝟎



Nash equilibrium - existence

Best responses

Given a partial strategy profile 𝒙−𝒋 action ෡𝒊𝒋 ∈ 𝒎𝒋  is a pure best 

response if 𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

A strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in which every player is 
best-responding

The support of every player 𝑗 ∈ [𝑛] contains only pure 
best responses:

෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  
 

𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

Regret
The regret of Player 𝑗 under a profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏

Support
For some 𝑗 ∈ 𝑛 , the support of a strategy 𝒙𝒋 is the subset of its actions 

played with positive probability 𝒔𝒖𝒑𝒑 𝒙𝒋 = 𝒊𝒋 ∈ 𝒎𝒋 ∶  𝒙𝒋,𝒊𝒋
> 𝟎 

 

equivalent to any of: 

The regret of every player 𝑗 ∈ [𝑛] is 𝟎:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 = 𝟎

Theorem [Nash, 1951] 
Every finite game (finitely many players, finitely many actions per player) has at least one Nash equilibrium

Nash equilibrium
A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy



Nash equilibrium: example
A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

𝟏/𝟐         𝟎         𝟏/𝟐         𝟎

𝟏/𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝟏

𝟎

𝟎

𝟏

𝟎

𝟎

𝑷𝟏, 𝒙−𝟏 𝑵 = 𝟐, 𝑷𝟏, 𝒙−𝟏 𝑴 = 𝟏/𝟐, 𝑷𝟏, 𝒙−𝟏 𝑺 = −𝟏/𝟒

𝑷𝟐, 𝒙−𝟐 𝑨 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑩 = 𝟎, 𝑷𝟐, 𝒙−𝟐 𝑪 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑫 = 𝟏/𝟐

𝑷𝟑, 𝒙−𝟑 𝑯 = 𝟏, 𝑷𝟑, 𝒙−𝟑 𝑳 = 𝟑/𝟐

𝒔𝒖𝒑𝒑 𝒙𝟏 = 𝑵 , 𝒔𝒖𝒑𝒑 𝒙𝟐 = 𝑨, 𝑪 , 𝒔𝒖𝒑𝒑 𝒙𝟑 = 𝑯, 𝑳

Regret of Pl.1 = 𝟐 − 𝟐 = 𝟎,   Regret of Pl.2 = 𝟏/𝟐 − 𝟏/𝟐 = 𝟎,   Regret of Pl.3 = 𝟑/𝟐 − 𝟓/𝟒 = 𝟏/𝟒

A strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in which every player is 
best-responding

The support of every player 𝑗 ∈ [𝑛] contains only pure 
best responses:

෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  
 

𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

The regret of every player 𝑗 ∈ [𝑛] is 𝟎:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 = 𝟎



Nash equilibrium: example
A             B               C             D

N

M

S

H

A             B               C             D

N

M

S

L

𝟐/𝟑         𝟎         𝟏/𝟑         𝟎

𝟏/𝟐

𝟐/𝟑         𝟎         𝟏/𝟑         𝟎

𝟏/𝟐

1, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −2, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟏, 𝟎, 𝟐 𝟑, −𝟏, 𝟐 𝟒, 𝟐, 𝟎 −𝟐, 𝟎, 𝟏

−𝟏, 𝟏, 𝟎 𝟏, 𝟐, 𝟒 −𝟏, 𝟏, −𝟏 𝟎, 𝟏, 𝟐

𝟏, 𝟐, −𝟐 𝟎, 𝟏, 𝟑 𝟏, −𝟐, 𝟑 𝟐, 𝟐, 𝟎

𝟑, 𝟏, 𝟏 𝟐, 𝟏, 𝟏 𝟎, −𝟏, 𝟐 −𝟑, 𝟏, −𝟏

𝟐, −𝟏, 𝟏 −𝟐, 𝟎, −𝟐 𝟐, 𝟎, 𝟏 𝟎, −𝟑, 𝟐

−𝟐, 𝟎, 𝟑 −𝟏, 𝟎, 𝟐 −𝟏, −𝟏, 
−𝟐

𝟏, −𝟏, −𝟐

𝟏

𝟎

𝟎

𝟏

𝟎

𝟎

𝑷𝟏, 𝒙−𝟏 𝑵 = 𝟐, 𝑷𝟏, 𝒙−𝟏 𝑴 = 𝟏/𝟐, 𝑷𝟏, 𝒙−𝟏 𝑺 = −𝟏/𝟑

𝑷𝟐, 𝒙−𝟐 𝑨 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑩 = 𝟎, 𝑷𝟐, 𝒙−𝟐 𝑪 = 𝟏/𝟐, 𝑷𝟐, 𝒙−𝟐 𝑫 = 𝟏/𝟐

𝑷𝟑, 𝒙−𝟑 𝑯 = 𝟒/𝟑, 𝑷𝟑, 𝒙−𝟑 𝑳 = 𝟒/𝟑

𝒔𝒖𝒑𝒑 𝒙𝟏 = 𝑵 , 𝒔𝒖𝒑𝒑 𝒙𝟐 = 𝑨, 𝑪 , 𝒔𝒖𝒑𝒑 𝒙𝟑 = 𝑯, 𝑳

Regret of Pl.1 = 𝟐 − 𝟐 = 𝟎,   Regret of Pl.2 = 𝟏/𝟐 − 𝟏/𝟐 = 𝟎,   Regret of Pl.3 = 𝟒/𝟑 − 𝟒/𝟑 = 𝟎

A strategy profile (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in which every player is 
best-responding

The support of every player 𝑗 ∈ [𝑛] contains only pure 
best responses:

෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  
 

𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

The regret of every player 𝑗 ∈ [𝑛] is 𝟎:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 = 𝟎
It is an equilibrium!

(might be more)



Notions of approximate Nash equilibria

The support of every player 𝑗 ∈ [𝑛] contains only pure 
best responses:

෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  
 

𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋
= 𝒎𝒂𝒙𝒊𝒋

𝑷𝒋, 𝒙−𝒋 𝒊𝒋

The regret of every player 𝑗 ∈ [𝑛] is 𝟎:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 = 𝟎 

𝜺-Well-Supported Nash equilibrium (𝜺-WSNE)

The support of every player 𝑗 ∈ [𝑛] contains only 
𝜺-best responses:
෡𝒊𝒋 ∈ 𝒔𝒖𝒑𝒑 𝒙𝒋  

 
𝑷𝒋, 𝒙−𝒋 ෡𝒊𝒋

≥ 𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝜺

𝜺-Nash equilibrium (𝜺-NE)

The regret of every player 𝑗 ∈ [𝑛] is at most 𝜺:

𝒎𝒂𝒙𝒊𝒋
𝑷𝒋, 𝒙−𝒋 𝒊𝒋

− 𝑷𝒋, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 ≤ 𝜺

 

𝟎-WSNE = 𝟎-NE = (exact) Nash equilibrium

❖ Normalization: w.l.o.g. all payoffs in [𝟎, 𝟏]
 

𝜺 ∈ [𝟎, 𝟏]

Nash equilibrium
A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy



Normal-form games: special families (𝑛 ≥ 2)

• Zero-sum (constant-sum): the payoffs in 
each action profile sum to a fixed number

• Symmetric: all players have the same action set, and 
for every action profile 𝑎 = 𝑎1, … , 𝑎𝑛  and every 
perturbation 𝜋: 𝑛 → [𝑛] we have 

𝑈𝑗 𝑎1, … , 𝑎𝑛 = 𝑈𝜋−1 𝑗 𝑎𝜋 1 , … , 𝑎𝜋 𝑛

❖ Find a symmetric Nash equilibrium 𝒔, 𝒔, … , 𝒔
(there always exists one in symmetric games [a])

[a] Non-cooperative games. Nash. 1951



• Win-lose: payoffs in 0,1 • Coordination: identical payoff tensors for all players

Normal-form games: special families (𝑛 ≥ 2)



Normal-form games:
Algorithms and Complexity



Computing pure vs computing mixed Nash equilibria

❖ Problem: Given a normal-form game, find a PNE (if it exists) or decide non-existence
➢ What is the complexity?

✓ Poly-time in the input size!
• For every action profile 𝑎1, 𝑎2, … , 𝑎𝑛 :
• Pick 𝑗 ∈ 𝑛  and check if any of her 𝑚 − 1 alternatives gives higher payoff: 

𝑛 𝑚 − 1  comparisons for each of the 𝑚𝑛 profiles

𝒏 players:          Action profiles described by an 𝒎𝟏 × 𝒎𝟐 × ⋯ × 𝒎𝒏 tensor

Input (𝒏-player 𝒎-action game):          𝒏 ⋅ 𝒎𝒏 payoff entries      

Pure Nash equilibrium (PNE)
An action profile in which no player can gain more payoff by unilaterally changing her action

We will focus on computing (approximate) mixed Nash equilibria 



Hardness results for 𝑛 ≥ 3

• Zero-sum (constant-sum): the payoffs in 
each action profile sum to a fixed number

➢ PPAD-complete 
✓ By reduction from 2-player games:

add a “dummy player” that makes payoffs sum 
to zero

❖ Recall from Argy’s talk: 2-player zero-sum games are 
poly-time solvable!



Hardness results for 𝑛 ≥ 3

➢ PPAD-complete 
✓ Reduce from previous 3-player (zero-

sum) game to a 3-player symmetric 
game [b] 

❖ Open problem: What is the complexity of 
finding any (also non-symmetric) Nash 
equilibrium in a symmetric game?

[a] Non-cooperative games. Nash. 1951

• Symmetric: all players have the same action set, and 
for every action profile 𝑎 = 𝑎1, … , 𝑎𝑛  and every 
perturbation 𝜋: 𝑛 → [𝑛] we have 

𝑈𝑗 𝑎1, … , 𝑎𝑛 = 𝑈𝜋−1 𝑗 𝑎𝜋 1 , … , 𝑎𝜋 𝑛

❖ Find a symmetric Nash equilibrium 𝒔, 𝒔, … , 𝒔
(there always exists one in symmetric games [a])

[b] ∃R-Completeness for Decision Versions of Multi-Player 
(Symmetric) Nash Equilibria. Garg, Mehta, Vazirani, Yazdanbod. 2018



Hardness results for 𝑛 ≥ 3

➢ PPAD-complete 
✓ Even 2-player win-lose games are PPAD-

complete, for 𝜀 = 1/𝑝𝑜𝑙𝑦(𝑚) [a] 
(recall Argy’s talk)

• Win-lose: payoffs in 0,1

[a] The approximation complexity of win-lose games. Chen, Teng, Valiant. 2007

Do we have any “good” algorithms? For what 𝜺?



Algorithms for 𝑛 ≥ 3

recall from Argy’s talk

In principle, it can be used for 
𝒏-player games

Every combination of sets corresponds 
to a feasibility problem that involves 
linear equations/inequalities

Every combination of sets 
corresponds to a feasibility 
problem that involves 
multilinear polynomial 
equations/inequalities
of degree 𝒏 − 𝟏



Algorithms for 𝑛 ≥ 3

recall from Argy’s talk

Extended for 𝒏-player games
[a], [b] 

[b] On a Generalization of the Lemke-Howson Algorithm 
to Noncooperative N-Person Games. Rosenmuller. 1971

[a] Computing Equilibria of N-Person Games. Wilson. 1971



Algorithms for 𝑛 ≥ 3: Quasi-PTAS

recall from Argy’s talk

Works also for 𝒏-player games
[a], [b] 

It gives a QPTAS:

𝑚
𝑂 𝑛⋅

log 𝑛+log 𝑚−log 𝜀
𝜀2

[a] Playing large games using simple strategies. Lipton, Markakis, Mehta. 2003

[b] Empirical Distribution of Equilibrium and its Testing Application. 
Babichenko, Barman, Peretz. 2013

By [c], even for 2-player games, 
there is a constant 𝜀 > 0 such 
that any algorithm requires time

𝑚𝑂 log1−𝑜(1)  𝑚

unless ETH for PPAD is false

[c] Settling the complexity of computing approximate two-player Nash 
equilibria. Rubinstein. 2016

So, for constant 𝑛 and 𝜀, this 
algorithm is asymptotically tight!

Can we do better than quasi-poly-time for large enough 𝜺?



Algorithms for 𝑛 ≥ 3: Poly-time

recall from Argy’s talk

Extension to 𝒏-player games:
By [b], if we have a poly-time algorithm that 
finds an 𝜀𝑘-NE in any 𝑘-player game, then we 
can compute in poly-time an 𝜀𝑘+1-NE for any 

𝑘 + 1 -player game, where 𝜀𝑘+1 =
1

2−𝜀𝑘

[a] A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in 
Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022

3-player games: 
3

5
+ 𝛿 -NE 

4-player games: 
5

7
+ 𝛿 -NE 

  ⋮

For 2-player games, there is a poly-time algorithm 

that finds a 
𝟏

𝟑
+ 𝜹 -NE for any 𝛿 > 0. [a]

[b] New algorithms for approximate Nash equilibria in bimatrix games. 
Bosse, Byrka, Markakis. 2010

❖ Open problem: For 3-player games, is there is a 
poly-time algorithm that finds a 𝜀-WSNE for 
some “small” 𝜀 > 0 ?

[c] A Polynomial-Time Algorithm for 1/2-Well-Supported Nash 
Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022

For 2-player games, there is a poly-time algorithm 

that finds a 
𝟏

𝟐
+ 𝜹 -WSNE for any 𝛿 > 0. [c]



Hardness of computing constrained Nash equilibria

recall from Argy’s talk

Implies NP-completeness for
 𝒏-player games (𝑛 ≥ 3): 
add “dummy” players to the 
2-player game

Is there an “efficient” algorithm for constrained Nash equilibria?



An algorithm for computing constrained Nash equilibria

[a] Approximating the existential theory of the reals. Deligkas, Fearnley, 
Melissourgos, Spirakis. 2018

[b] Inapproximability results for constrained approximate Nash 
equilibria. Deligkas, Fearnley, Savani. 2018

A QPTAS for computing constrained Nash equilibria:

Given an 𝒏-player game with 
• at most 𝒎 actions per player
• 𝒌 many constraints written as equalities/inequalities of polynomials 

with maximum degree 𝒅
there is an algorithm that either finds an 𝜺-constrained 𝜺-NE in time
  

𝒎
𝑶

𝒏𝟔⋅𝒅𝟔⋅𝐥𝐨𝐠(𝟐𝒏𝒅𝒌)

𝜺𝟓

or answers that there is no 𝟎-constrained 𝟎-NE [a]

By [b], even for 2-player games, 
for any 𝜀 < 1/8, any algorithm 
requires time

𝑚𝑂 log 𝑚

unless ETH for 3SAT is false
NE constraints:

𝑘 = 𝑝𝑜𝑙𝑦 𝑛 ⋅ 𝑚

So, for constant 𝑛, 𝑑 and 𝜀, this 
algorithm is asymptotically tight!

The constrained problems at 
hand can be written as 
polynomial (in)equalities



An intermission for exact Nash equilibria

[a] On the Complexity of Nash Equilibria and Other Fixed Points. Etessami, 
Yannakakis. 2010

Even for 𝟑-player games:

• finding an exact NE (i.e. 0-NE) is FIXP-complete [a]

• deciding existence of a constrained exact NE is ETR-complete [b], [c], [d], [e]

even for symmetric games or zero-sum games

[b] Fixed points, Nash equilibria, and the existential theory of the reals. 
Schaefer, Štefankovic. 2017

[c] ∃R-Completeness for Decision Versions of Multi-Player (Symmetric) 
Nash Equilibria. Garg, Mehta, Vazirani, Yazdanbod. 2018

[d] ΕΤR-complete decision problems about (symmetric) Nash 
equilibria in (symmetric) multi-player games. Bilò, Mavronicolas. 2017

[e] On the Computational Complexity of Decision Problems About 
Multi-player Nash Equilibria. Berthelsen, Hansen. 2022

➢ FIXP contains the Sum-Of-Squares problem: not even known 
to be in NP [a]

➢ NP ⊆ ETR  ⊆ PSPACE  [f]

[f] Some algebraic and geometric computations in PSPACE. Canny. 
1988

a.k.a. ∃ℝ

Still, as soon as we relax to 𝜀-NE, 
the previous QPTAS applies!



Graphical games:
Definitions



Graphical games [a]

Directed graph 𝐺 = 𝑉, 𝐸
• 𝑉: player set  

 
𝑉 = 𝑛 

• 𝐸: captures interactions 

Player 𝒋 ∈ [𝒏] participates in game with her in-neighbours
𝒋

𝒂

[a] Graphical models for game theory. Kearns, Littman, Singh. 2001



Graphical games [a]

𝒋

𝒂

𝒋

𝒂
𝒃

Input (𝒎-action, 𝒅-in-degree):   𝒏 ⋅ 𝒎𝒅+𝟏 payoff entries      

(succinct representation)

[a] Graphical models for game theory. Kearns, Littman, Singh. 2001

Directed graph 𝐺 = 𝑉, 𝐸
• 𝑉: player set  

 
𝑉 = 𝑛 

• 𝐸: captures interactions 

Player 𝒋 ∈ [𝒏] participates in game with her in-neighbours



Class of graphical games: polymatrix [a]

Undirected graph 𝐺 = 𝑉, 𝐸
• 𝑉: player set  

 
𝑉 = 𝑛 

• 𝐸: captures pairwise interactions 

Player 𝒋 ∈ [𝒏] participates in bimatrix games, one with 
each of her neighbours

[a] Equilibrium points in polymatrix games. Janovskaja. 1968

𝒋

𝒂



Class of graphical games: polymatrix [a]

Undirected graph 𝐺 = 𝑉, 𝐸
• 𝑉: player set  

 
𝑉 = 𝑛 

• 𝐸: captures pairwise interactions 

Player 𝒋 ∈ [𝒏] participates in bimatrix games, one with 
each of her neighbours
• 𝒋’s payoff: sum of bimatrix games payoffs

𝒂

𝒃 Input (𝒎-action, 𝒅-degree):   𝒏 ⋅ 𝒅 ⋅ 𝒎𝟐 payoff entries      

(succinct representation)

[a] Equilibrium points in polymatrix games. Janovskaja. 1968

𝒋

𝒂

𝑎1

𝑎2

𝑏1 𝑏2 𝒂

𝒋

𝑎1

𝑎2

𝑗1 𝑗2



Polymatrix games:
Algorithms and Complexity



Hardness results for polymatrix

• Polymatrix games: ➢ PPAD-complete [a], [b], [c]
END-OF-LINE ≤𝑝 DISCRETE-BROUWER ≤𝑝 GENERALIZED-CIRCUIT ≤𝑝 

         ≤𝑝 𝜺-WSNE-POLYMATRIX ≤𝑝 𝜺−NE-POLYMATRIX ≤𝑝 2-NASH

• In fact:
✓ 𝜺 = 1/exp N   [a]
✓ 𝜺 = 1/poly N    [b]
✓ 𝜺 = const     (of the order 10−8)  [c]

o even for 2-action, degree-3, bipartite graphs

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008

[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009



Hardness results for polymatrix

• Polymatrix games: ➢ PPAD-complete [a], [b], [c]
END-OF-LINE ≤𝑝 DISCRETE-BROUWER ≤𝑝 GENERALIZED-CIRCUIT ≤𝑝 

         ≤𝑝 𝜺-WSNE-POLYMATRIX ≤𝑝 𝜺−NE-POLYMATRIX ≤𝑝 2-NASH

• In fact:
✓ 𝜺 = 1/exp N   [a]
✓ 𝜺 = 1/poly N    [b]
✓ 𝜺 = const     (of the order 10−8)  [c]

o even for 2-action, degree-3, bipartite graphs

• Graphical games: ➢ PPAD-complete: poly-time reduction since actions and degree are constant 

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008

[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009



Hardness results for polymatrix

• Finding an NE in polymatrix games with zero-sum and 
coordination games on the edges is PPAD-complete [a]

2, -2 -4, 4

-3, 3-2, 2

U

D

L R

0, 0 4, 4

1, 17, 7

L R

A

B

2, -2 1, -1

-3, 31, -1

U

D

A B

Group-wise zero-sum polymatrix games

➢ Partition the players into groups
➢ Players in the same group play a coordination game
➢ Players in different groups play zero-sum games

• Group-wise zero-sum games are PPAD-complete 
even with three groups of players [a]

❖ Open problem: Group-wise zero-sum with two groups?
[a] On Minmax Theorems for Multiplayer Games. Cai, Daskalakis. 2011



Hardness results for polymatrix

[a] On Minmax Theorems for Multiplayer Games. Cai, Daskalakis. 2011

2, 2 4, 4

3, 32, 2

U

D

L R

0, 0 4, 4

1, 17, 7

L R

A

B

2, 2 1, 1

3, 31, 1

U

D

A B

Coordination-only polymatrix games [a]

➢ Find a pure Nash equilibrim:  PLS-complete
➢ Find a mixed Nash equilibrim:  in PLS ∩ PPAD

❖ Open problem: Complexity of (mixed) NE



Hardness results: constrained NE in polymatrix
It is NP-complete to decide whether there is a strategy profile with sum of payoffs 𝒖 even in 
polymatrix games with:
• degree 3, bipartite, planar graph
• at most 3 actions per player [a]

[a] Computing Constrained Approximate Equilibria in Polymatrix Games. 
Deligkas, Fearnley, Savani. 2017

For any 𝜀 ∈ 0,1 , it is NP-complete to decide whether a polymatrix game has an 𝜀-NE with sum 
of payoffs 𝒖      [a]

For any 𝜀 ∈ 0,1 , it is NP-complete to decide whether a polymatrix game possesses a 
constrained 𝜀-WSNE. This holds even for polymatrix games with:
• degree 3, bipartite, planar graph
• at most 7 actions per player [a]



Algorithms for polymatrix
1

2
+ 𝛿 -NE of a polymatrix game can be found in time 𝑝𝑜𝑙𝑦 𝑁,

1

𝛿
, for any 𝛿 > 0  [a]

[a] Computing Approximate Nash Equilibria of Polymatrix Games. Deligkas, 
Fearnley, Savani, Spirakis. 2014

➢ Paths with two actions: polynomial time [e]
➢ Cycles with two actions: polynomial time [e]
➢ Trees with constant actions

 QPTAS [f]
 FPTAS [g]

➢ Bounded treewidth: QPTAS [d]

➢ Constant pathwidth: PPAD-hard [e]
➢ Sparse, win-lose, 2 actions: PPAD-hard [h]
➢ Trees, 20 actions, exact NE: PPAD-hard [i]

All QPTASs results use 
the same underlying 
principle as [b], [c]

[b] Playing large games using simple strategies. Lipton, Markakis, Mehta. 
2003

[c] Approximating the existential theory of the reals. Deligkas, Fearnley, 
Melissourgos, Spirakis. 2018

[d] Computing Constrained Approximate Equilibria in Polymatrix Games. 
Deligkas, Fearnley, Savani. 2017 
[e] Nash equilibria in graphical games on trees revisited. Elkind, Goldberg, 
Goldberg. 2006
[f] Approximating Nash equilibria in tree polymatrix games. Barman, 
Ligett, Piliouras. 2016
[g] Tractable algorithms for approximate Nash equilibria in generalized 
graphical games with tree structure. Ortiz, Irfan. 2017
[h] On the Approximation of Nash Equilibria in Sparse Win-Lose Multi-
Player Games. Liu, Li, Deng. 2021
[i] Tree polymatrix games are PPAD-hard. Deligkas, Fearnley, Savani. 2020

Graph classes:



Graphical/polymatrix games:
Recent tight results



A new tool to show PPAD-hardness

[a] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, 
Hollender, Melissourgos. 2022

The Pure-Circuit problem [a]:

Input: A Boolean circuit, with a twist:
• The circuit can have cycles
• Nodes take values in {𝟎, 𝟏, ⊥}, instead of just {0,1}
• In addition to the standard logical gates (NOT, OR, AND), the circuit can also have 

“PURIFY” gates

Goal: Assign a value (in {0,1, ⊥}) to each node, such that all gates are “satisfied”

Pure-Circuit is PPAD-complete   [a]



Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

NOT
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NOT gate:

NOT

⊥

anything in {0,1, ⊥}



Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

AND
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AND gate:
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AND gate:

AND

⊥

anything
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Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

AND

⊥

0

0

(with robustness!)
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PURIFY gate:

PURIFY
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PURIFY gate:

PURIFY

⊥

at least one in {0,1}
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⊥

⊥ ⊥



Pure-Circuit: a new tool to show PPAD-hardness
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PURIFY

⊥
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Pure-Circuit gates:
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1.    The circuit can have cycles
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1.    The circuit can have cycles
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1.    The circuit can have cycles

NOT

AND

PURIFY

0

0

1 0 0

0
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NOT NOT
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NOT NOT

0
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2.    Nodes take values in {0,1, ⊥}, instead of just {0,1}

NOT

NOT NOT

0
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2.    Nodes take values in {0,1, ⊥}, instead of just {0,1}

NOT

NOT NOT

0 1
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⊥
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3.    In addition to the standard logical gates (NOT, OR, AND), the circuit can also 
have “PURIFY” gates
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⊥

⊥
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3.    In addition to the standard logical gates (NOT, OR, AND), the circuit can also 
have “PURIFY” gates

PURIFY

NOT
AND

NOT

NOT

NOT
⊥

⊥

⊥

⊥

0

0

1



Stronger hardness results for 𝜀-WSNE in polymatrix

• Polymatrix games:
➢ PPAD-complete

GENERALIZED-CIRCUIT ≤𝑝 𝜺-WSNE-POLYMATRIX

PURE-CIRCUIT ≤𝑝 𝜺-WSNE-POLYMATRIX 

[d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, 
Hollender, Melissourgos. 2022

✓ 𝜺 = 1/exp N   [a]
✓ 𝜺 = 1/poly N    [b]
✓ 𝜺 = const     (of the order 10−8)  [c]

o even for 2-action polymatrix on bipartite graphs
✓ 𝜺 < 𝟏/𝟑  [d]

o even for 2-action, degree-3, bipartite graphs

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, 
Papadimitriou. 2008
[b] Settling the complexity of computing two-player Nash equilibria. Chen, 
Deng, Teng. 2009

Idea: 
• replace each vertex of the Pure-Circuit graph by a player 
• The player has 2 actions zero, one and his payoffs 

simulate the function of the corresponding gates
• zero = 𝟎, one = 𝟏, mix =⊥



A simple algorithm for 1/3-WSNE in 2-action polymatrix

[a] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, 
Hollender, Melissourgos. 2022

𝟏/𝟑-WSNE algorithm for 2-action polymatrix games [a]:

1. Find a player such that one of its two actions is always a 1/3-best-response (no matter what 
the other players play). Fix the player’s strategy to that action, and remove the player from 
the game.

2. Repeat Step 1 until no such player exists anymore.
3. For the remaining players, have them mix uniformly between their two actions, i.e., have 

them play 
1

2
,

1

2
.

→  Can show that this always yields a 1/3-WSNE (by a simple direct computation)

PPAD/P dichotomy at 𝜀 = 1/3

❖ Open problem: At what 𝜀 is there a dichotomy for 
3-action polymatrix 𝜀-WSNE? What about more actions? 



Stronger hardness results for 𝜀-NE in polymatrix

• Polymatrix games:
➢ PPAD-complete

GENERALIZED-CIRCUIT ≤𝑝 𝜺-NE-POLYMATRIX

PURE-CIRCUIT ≤𝑝 𝜺-NE-POLYMATRIX 

✓ 𝜺 = 1/exp N   [a]
✓ 𝜺 = 1/poly N    [b]
✓ 𝜺 = const     (of the order 10−8)  [c]

o even for 2-action polymatrix on bipartite graphs
✓ 𝜺 < 𝟎. 𝟎𝟖𝟖  [d]

o even for 2-action, degree-3, bipartite graphs

[d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, 
Hollender, Melissourgos. 2022

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, 
Papadimitriou. 2008
[b] Settling the complexity of computing two-player Nash equilibria. Chen, 
Deng, Teng. 2009



A simple algorithm for 1/5-NE in 2-action polymatrix

𝟏/𝟓-NE algorithm for 2-action polymatrix games:

1. Find a player such that one of its two actions is always a 𝟏/𝟓-best-response (no matter what 
the other players play). Fix the player’s strategy to that action, and remove the player from 
the game.

2. Repeat Step 1 until no such player exists anymore.
3. For the remaining players, have them mix uniformly between their two actions, i.e., have 

them play 
1

2
,

1

2
.

→  Can show that this always yields a 𝟏/𝟓-NE (by a simple direct computation)

There is a gap in 𝜀:  0.088 − 0.2

❖ Open problem: Can we close this gap?



Tight hardness results for 𝜀-WSNE / 𝜀-NE in graphical
• Graphical games:

➢ PPAD-complete

GENERALIZED-CIRCUIT ≤𝑝 𝜺-WSNE-GRAPHICAL

GENERALIZED-CIRCUIT ≤𝑝 𝜺-NE-GRAPHICAL

PURE-CIRCUIT ≤𝑝 𝜺-WSNE-GRAPHICAL 

PURE-CIRCUIT ≤𝑝 𝜺-NE-GRAPHICAL

[d] Tight Inapproximability for Graphical Games. Deligkas, Fearnley, Hollender, Melissourgos. 2022

✓ 𝜺 = 1/exp N   [a]
✓ 𝜺 = 1/poly N    [b]
✓ 𝜺 = const     (of the order 10−8)  [c]

o even for 2-action polymatrix on bipartite graphs
✓ 𝜺 < 𝟏  for 𝜺-WSNE [d]    -    Any profile is 1-WSNE

✓ 𝜺 < 𝟏/𝟐  for 𝜺-NE [d]     -    2-action games: every player
1

2
,

1

2
 is a 1/2-NE

[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008

[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009
Idea: 
• Similar idea to polymatrix – different encoding

PPAD/P dichotomy at 
• 𝜀 = 1 for WSNE
• 𝜀 = 1/2 for NE

❖ Open problem: At what 𝜀 is there a 
dichotomy for 3-action graphical 𝜀-NE?
What about more actions? 



Discussion

❖ Close the gaps of approximability-inapproximability

❖ Find new meaningful classes of instances that admit “efficient” algorithms

Thank you!
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