Computation of Nash Equilibria: Multi-Player Games

Themistoklis Melissourgos
University of Essex

EASSS 2023

Outline

\square Normal-form games
$>$ Definitions
$>$ Algorithms and Complexity
\square Graphical games
$>$ Definitions
> Polymatrix games
\checkmark Algorithms and Complexity
$>$ Graphical/polymatrix games: Recent tight results

Normal-form games:
Definitions

Normal-form games

3 players:

\boldsymbol{n} players: \quad Action profiles described by an $\boldsymbol{m}_{\mathbf{1}} \times \boldsymbol{m}_{\mathbf{2}} \times \cdots \times \boldsymbol{m}_{\boldsymbol{n}}$ tensor

Input (\boldsymbol{n}-player \boldsymbol{m}-action game): $\boldsymbol{n} \cdot \boldsymbol{m}^{\boldsymbol{n}}$ payoff entries

Normal-form games - visualization

Actions and strategies

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game
They simultaneously choose actions:

- Player 1 chooses action $\boldsymbol{i}_{\mathbf{1}} \in\left[\boldsymbol{m}_{\mathbf{1}}\right]$
- Player \boldsymbol{j} chooses action $\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$:
- Player n chooses action $\boldsymbol{i}_{\boldsymbol{n}} \in\left[\boldsymbol{m}_{\boldsymbol{n}}\right]$

They can choose an action probabilistically!

- Player $\boldsymbol{j} \in[\boldsymbol{n}]$ chooses his action according to probability distribution $\boldsymbol{x}_{\boldsymbol{j}}$
$>\boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}$ is the probability he chooses action $\boldsymbol{i}_{\boldsymbol{j}}$

$$
x_{j, 1}+x_{j, 2}+\ldots+x_{j, m_{j}}=1 \quad ; x_{j, i_{j}} \geq \mathbf{0}
$$

$>\boldsymbol{x}_{\boldsymbol{j}}$ is the strategy of Player j
$>\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is the strategy profile
$>\boldsymbol{x}_{\boldsymbol{j}}$ is an action (a.k.a. pure strategy) if $\boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}=\mathbf{1}$ for some $\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$

		$\underset{\mathrm{A}}{x_{2,1}}$	$\underset{\text { B }}{x_{2,2}}$	$\underset{C}{x_{2,3}}$	$\begin{gathered} x_{2,4} \\ \mathrm{D} \end{gathered}$
$\boldsymbol{x}_{1,1}$	N	1, 0, 2	3, -1, 2	4, 2, 0	-2, 0, 1
$\boldsymbol{x}_{1,2}$	M	-1, 1, 0	1,2,4	-1, 1, -1	0,1,2
$x_{1,3}$	S	1,2,-2	0,1,3	1, -2, 3	2,2,0
		${ }_{\mathrm{H}} \boldsymbol{x}_{\mathbf{3 , 1}}$			
		$x_{2,1}$	$\boldsymbol{x}_{2,2}$	$x_{2,3}$	$x_{2,4}$
		A	B	C	D

$\boldsymbol{x}_{1,1}$	N	3,1,1	2,1,1	0, -1, 2	-3, 1, -1
$\boldsymbol{x}_{1,2}$	M	2,-1, 1	-2, 0, -2	2,0,1	$0,-3,2$
$\boldsymbol{x}_{1,3}$	S	-2, 0, 3	-1, 0, 2	$\begin{aligned} & -1,-1, \\ & -2 \end{aligned}$	1, -1, -2
${ }_{\mathrm{L}} \boldsymbol{x}_{3,2}$					

Actions and strategies

3 players, $\quad m_{1} \times m_{2} \times m_{3}$ game

They simultaneously choose actions:

- Player 1 chooses action $\boldsymbol{i}_{\mathbf{1}} \in\left[\boldsymbol{m}_{\mathbf{1}}\right] \quad m_{\mathbf{1}}=3$
- Player \boldsymbol{j} chooses action $\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right] \quad \boldsymbol{m}_{2}=4$:
- Player n chooses action $\boldsymbol{i}_{\boldsymbol{n}} \in\left[\boldsymbol{m}_{\boldsymbol{n}}\right] \quad \boldsymbol{m}_{3}=2$

They can choose an action probabilistically!

- Player $\boldsymbol{j} \in[\boldsymbol{n}]$ chooses his action according to probability distribution $\boldsymbol{x}_{\boldsymbol{j}}$
$>\boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}$ is the probability he chooses action $\boldsymbol{i}_{\boldsymbol{j}}$ $x_{j, 1}+x_{j, 2}+\ldots+x_{j, m_{j}}=1 \quad ; x_{j, i_{j}} \geq 0$
$>\boldsymbol{x}_{\boldsymbol{j}}$ is the strategy of Player j
$>\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is the strategy profile
$>\boldsymbol{x}_{\boldsymbol{j}}$ is an action (a.k.a. pure strategy) if $\boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}=\mathbf{1}$ for some $\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$

		$x_{2,1}$	$\begin{gathered} x_{2,2} \\ \text { B } \end{gathered}$	$\underset{C}{x_{2,3}}$	$\begin{gathered} x_{2,4} \\ D \end{gathered}$
$\boldsymbol{x}_{1,1}$	N	1, 0,2	3, -1, 2	4, 2, 0	-2, 0, 1
$x_{1,2}$	M	-1,1,0	1,2,4	-1, 1, -1	0,1,2
$x_{1,3}$	S	1,2,-2	0,1,3	1, -2, 3	2,2,0
		H $\boldsymbol{x}_{\mathbf{3 , 1}}$			
		$\boldsymbol{x}_{2,1}$	$\boldsymbol{x}_{2,2}$	$x_{2,3}$	$x_{2,4}$
		A	B	C	D

$\boldsymbol{x}_{1,1}$	N	3,1,1	2,1,1	0, -1, 2	-3, 1, -1
$\boldsymbol{x}_{1,2}$	M	$2,-1,1$	-2, 0, -2	2,0,1	0, -3, 2
$\boldsymbol{x}_{1,3}$	S	-2, 0, 3	-1, 0, 2	$\begin{aligned} & -1,-1, \\ & -2 \end{aligned}$	1, -1, -2

Expected payoffs

n players, $\quad \boldsymbol{m}_{1} \times \boldsymbol{m}_{2} \times \cdots \times \boldsymbol{m}_{\boldsymbol{n}}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$) the expected payoff of Player j is

$$
\begin{aligned}
& \sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}} \ldots \sum_{i_{n}=1}^{m_{n}} x_{1, i_{1}} \cdot x_{2, i_{2}} \cdots x_{n, i_{n}} \cdot P_{j}\left(i_{1}, i_{2}, \ldots, i_{n}\right) \\
& =\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
\end{aligned}
$$

$$
\text { For Player } j \in[n] \text { and some } i_{j} \in\left[m_{j}\right] \text { : }
$$

$$
\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}:=\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle_{x_{j, i}=1}
$$

$$
=\sum_{\boldsymbol{i}_{\boldsymbol{j}}=\mathbf{1}}^{\boldsymbol{m}_{\boldsymbol{j}}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}{\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}}_{\begin{array}{c}
\text { partial } \\
\text { strategy } \\
\text { profile }
\end{array}}
$$

Expected payoffs

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$) the expected

$$
\left\langle P_{1}, x_{-1}\right\rangle_{1}
$$

		$\underset{\mathrm{A}, 1}{x_{2,1}}$	$\begin{gathered} x_{2,2} \\ B \end{gathered}$	$\begin{gathered} x_{2,3} \\ \text { C } \end{gathered}$	$\begin{gathered} x_{2,4} \\ \mathrm{D} \end{gathered}$
$\boldsymbol{x}_{1,1}$		1,0,2	3, -1, 2	4, 2, 0	-2,0,1
$\boldsymbol{x}_{1,2}$	M	-1, 1, 0	1,2,4	-1,1,-1	0,1,2
$x_{1,3}$	s	1, 2,-2	0,1,3	1,-2, 3	2,2,0
		H $x_{3,1}$			
		$x_{2,1}$	$\boldsymbol{x}_{2,2}$	$x_{2,3}$	$\boldsymbol{x}_{2,4}$
		A	B	c	D

Expected payoffs

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$) the expected ${ }_{m}$ payoff of Player j is $\sum_{i_{j}=\mathbf{1}}^{m_{j}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}} \cdot\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}} \quad \begin{gathered}\text { Expected payoff of } \\ \text { Player } j \text { when } \\ \text { playing } i_{j}\end{gathered}$

$$
\left\langle P_{1}, x_{-1}\right\rangle_{1}
$$

	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$\begin{gathered} x_{2,4} \\ \mathrm{D} \end{gathered}$
$1=x_{1,1}$	1,0,2	3,-1,2	4,2,0	-2, 0, 1
$\mathbf{0}=\boldsymbol{x}_{1,2}$	-1,1,0	1,2,4	-1,1,-1	0,1,2
$0=x_{1,3}$	1,2,-2	0,1,3	1,-2,3	2,2,0
	H $x_{3,1}$			
	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$
	A	B	C	D
$1=x_{1,1}$	3,1,1	2,1,1	0,-1,2	-3, 1, -1
$0=x_{1,2}$	2, -1, 1	-2,0,-2	2,0,1	0,-3,2
$0=x_{1,3}$	-2,0,3	-1,0,2	$-1,-1$, -2	1,-1,-2
	${ }_{\llcorner } \boldsymbol{x}_{3,2}$			

Expected payoffs

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ the expected

$$
\begin{aligned}
& \text { payoff of Player } j \text { is } \\
& \sum_{\boldsymbol{i}_{\boldsymbol{j}}=\boldsymbol{1}}^{\boldsymbol{m}_{\boldsymbol{j}}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}^{\text {payoff of Player } \boldsymbol{j} \text { is }}\left\langle\begin{array}{c}
\text { Expected payoff of } \\
\text { Player } j \text { when } \\
\text { playing } \boldsymbol{x}_{\boldsymbol{j}}
\end{array}\right. \\
& \left\langle P_{1}, x_{-1}\right\rangle_{1}= \\
& 1 \cdot x_{2,1} \cdot x_{3,1}+3 \cdot x_{2,2} \cdot x_{3,1}+4 \cdot x_{2,3} \cdot x_{3,1}-2 \cdot x_{2,4} \cdot x_{3,1} \\
& +3 \cdot \boldsymbol{x}_{2,1} \cdot \boldsymbol{x}_{3,2}+2 \cdot \boldsymbol{x}_{2,2} \cdot \boldsymbol{x}_{3,2}+0 \cdot \boldsymbol{x}_{2,3} \cdot \boldsymbol{x}_{3,2}-3 \cdot \boldsymbol{x}_{2,4} \cdot \boldsymbol{x}_{\mathbf{3 , 2}}
\end{aligned}
$$

Expected payoffs

n players, $\quad m_{1} \times \boldsymbol{m}_{2} \times \cdots \times \boldsymbol{m}_{\boldsymbol{n}}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$) the expected

$$
\begin{aligned}
& \text { payoff of Player } j \text { is } \\
& \sum_{\boldsymbol{i}_{\boldsymbol{j}}=\boldsymbol{1}}^{\boldsymbol{m}_{\boldsymbol{j}}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}^{\text {payoff of Player } \boldsymbol{j} \text { is }}\left\langle\begin{array}{c}
\text { Expected payoff of } \\
\text { Player } j \text { when } \\
\text { playing } \boldsymbol{i}_{\boldsymbol{j}}
\end{array}\right. \\
& \left\langle P_{1}, x_{-1}\right\rangle_{1}= \\
& 1 \cdot x_{2,1} \cdot x_{3,1}+3 \cdot x_{2,2} \cdot x_{3,1}+4 \cdot x_{2,3} \cdot x_{3,1}-2 \cdot x_{2,4} \cdot x_{3,1} \\
& +3 \cdot \boldsymbol{x}_{2,1} \cdot \boldsymbol{x}_{3,2}+2 \cdot \boldsymbol{x}_{2,2} \cdot \boldsymbol{x}_{3,2}+0 \cdot \boldsymbol{x}_{2,3} \cdot \boldsymbol{x}_{3,2}-3 \cdot \boldsymbol{x}_{2,4} \cdot \boldsymbol{x}_{3,2} \\
& \begin{array}{r}
\vdots \\
\left\langle P_{3}, x_{-3}\right\rangle_{2}
\end{array}
\end{aligned}
$$

		$\begin{array}{r} x_{2,1} \\ \text { A } \end{array}$	$\begin{gathered} x_{2,2} \\ \text { B } \end{gathered}$	$\underset{C}{x_{2,3}}$	$\begin{gathered} x_{2,4} \\ \mathrm{D} \end{gathered}$
$\boldsymbol{x}_{1,1}$		1, 0, 2	3,-1, 2	4, 2, 0	-2, 0,1
$\boldsymbol{x}_{1,2}$		-1,1,0	1,2,4	-1, 1, -1	0, 1, 2
$\boldsymbol{x}_{1,3}$	S	1,2,-2	0,1,3	1, -2, 3	2, 2, 0
				$\boldsymbol{x}_{\mathbf{3 , 1}}$	
		$x_{2,1}$	$\begin{gathered} x_{2,2} \\ \text { B } \end{gathered}$	$x_{2,3}$	$\begin{gathered} x_{2,4} \\ \mathrm{D} \end{gathered}$
$\boldsymbol{x}_{1,1}$	N	3,1,1	2,1,1	0, -1, 2	-3, 1, -1
$x_{1,2}$	M	$2,-1,1$	-2, 0, -2	2, 0, 1	0, -3, 2
$\boldsymbol{x}_{1,3}$	S	-2,0,3	-1, 0, 2	$-1,-1$, -2	1, -1, -2
${ }_{\mathrm{L}} \boldsymbol{x}_{3,2}$					

Expected payoffs

n players, $\quad m_{1} \times \boldsymbol{m}_{2} \times \cdots \times \boldsymbol{m}_{\boldsymbol{n}}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the expected

$$
\begin{aligned}
& \text { payoff of Player } j \text { is } \\
& \sum_{\boldsymbol{i}_{\boldsymbol{j}}=\boldsymbol{1}}^{\boldsymbol{m}_{\boldsymbol{j}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}^{\text {payoff of Player } j \text { is }}\left\langle\begin{array}{c}
\text { Expected payoff of } \\
\text { Player } j \text { when } \\
\text { playing } i_{j}
\end{array}\right.} \\
& \left\langle P_{1}, x_{-1}\right\rangle_{1}= \\
& 1 \cdot x_{2,1} \cdot x_{3,1}+3 \cdot x_{2,2} \cdot x_{3,1}+4 \cdot x_{2,3} \cdot x_{3,1}-2 \cdot x_{2,4} \cdot x_{3,1} \\
& +3 \cdot \boldsymbol{x}_{2,1} \cdot \boldsymbol{x}_{3,2}+2 \cdot \boldsymbol{x}_{2,2} \cdot \boldsymbol{x}_{3,2}+0 \cdot \boldsymbol{x}_{2,3} \cdot \boldsymbol{x}_{3,2}-3 \cdot \boldsymbol{x}_{2,4} \cdot \boldsymbol{x}_{3,2} \\
& \begin{array}{r}
\vdots \\
\left\langle P_{3}, x_{-3}\right\rangle_{2}
\end{array}
\end{aligned}
$$

		$x_{2,1}$	$\boldsymbol{x}_{2,2}$ B	$\underset{C}{x_{2,3}}$	$\underset{\mathrm{D}}{\boldsymbol{x}_{2,4}}$
$\boldsymbol{x}_{1,1}$		1, 0, 2	$3,-1,2$	4, 2, 0	-2, 0,1
$\boldsymbol{x}_{1,2}$	M	-1,1,0	1, 2, 4	-1, 1, -1	0,1,2
$x_{1,3}$	S	1,2,-2	0,1,3	1, -2, 3	2,2,0
		$\mathrm{H} \boldsymbol{x}_{3,1}=0$			
		$x_{2,1}$	$\boldsymbol{x}_{2,2}$	$\boldsymbol{x}_{2,3}$	$\boldsymbol{x}_{2,4}$
		A	B	C	D

Expected payoffs

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ the expected

$$
\begin{aligned}
& \text { payoff of Player } j \text { is } \\
& \sum_{\boldsymbol{i}_{\boldsymbol{j}}=\boldsymbol{1}}^{\boldsymbol{m}_{\boldsymbol{j}}} \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}} \cdot\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}} \quad \begin{array}{c}
\text { Expected payoff of } \\
\text { Player } j \text { when } \\
\text { playing } i_{j}
\end{array} \\
& \left\langle P_{1}, x_{-1}\right\rangle_{1}= \\
& 1 \cdot x_{2,1} \cdot x_{3,1}+3 \cdot x_{2,2} \cdot x_{3,1}+4 \cdot x_{2,3} \cdot x_{3,1}-2 \cdot x_{2,4} \cdot x_{3,1} \\
& +3 \cdot \boldsymbol{x}_{2,1} \cdot \boldsymbol{x}_{3,2}+2 \cdot \boldsymbol{x}_{2,2} \cdot \boldsymbol{x}_{3,2}+0 \cdot \boldsymbol{x}_{2,3} \cdot \boldsymbol{x}_{3,2}-3 \cdot \boldsymbol{x}_{2,4} \cdot \boldsymbol{x}_{3,2} \\
& \begin{array}{c}
\vdots \\
\left\langle P_{3}, x_{-3}\right\rangle_{2}=
\end{array} \\
& 1 \cdot \boldsymbol{x}_{1,1} \cdot \boldsymbol{x}_{2,1}+1 \cdot \boldsymbol{x}_{1,1} \cdot \boldsymbol{x}_{2,2}+2 \cdot \boldsymbol{x}_{1,1} \cdot \boldsymbol{x}_{\mathbf{2 , 3}}-1 \cdot \boldsymbol{x}_{1,1} \cdot \boldsymbol{x}_{\mathbf{2 , 4}} \\
& +1 \cdot \boldsymbol{x}_{1,2} \cdot \boldsymbol{x}_{2,1}-2 \cdot \boldsymbol{x}_{1,2} \cdot \boldsymbol{x}_{2,2}+1 \cdot \boldsymbol{x}_{1,2} \cdot \boldsymbol{x}_{2,3}+2 \cdot \boldsymbol{x}_{1,2} \cdot \boldsymbol{x}_{2,4} \\
& +3 \cdot \boldsymbol{x}_{1,3} \cdot \boldsymbol{x}_{2,1}+2 \cdot \boldsymbol{x}_{1,3} \cdot \boldsymbol{x}_{2,2}-2 \cdot \boldsymbol{x}_{1,3} \cdot \boldsymbol{x}_{2,3}-2 \cdot \boldsymbol{x}_{1,3} \cdot \boldsymbol{x}_{2,4}
\end{aligned}
$$

		$x_{2,1}$	$\boldsymbol{x}_{2,2}$ B	$\underset{C}{x_{2,3}}$	$\begin{gathered} x_{2,4} \\ \text { D } \end{gathered}$
$x_{1,1}$		1, 0, 2	$3,-1,2$	4, 2, 0	-2, 0,1
$\boldsymbol{x}_{1,2}$	M	-1,1,0	1, 2, 4	-1, 1, -1	0,1,2
$\boldsymbol{x}_{1,3}$	S	1,2,-2	0,1,3	1,-2, 3	2,2,0
		$\mathrm{H} \boldsymbol{x}_{3,1}=0$			
		$x_{2,1}$	$\boldsymbol{x}_{2,2}$	$\boldsymbol{x}_{2,3}$	$x_{2,4}$
		A	B	C	D

Support, best responses, and regret

n players, $\quad m_{1} \times m_{2} \times \cdots \times m_{n}$ game

- Let Player $j \in[n]$ have payoff tensor $\boldsymbol{P}_{\boldsymbol{j}}$
- In strategy profile ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$) the expected

$$
{ }_{m} \text { payoff of Player } j \text { is }
$$

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\hat{\boldsymbol{i}}_{\boldsymbol{j}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Regret

The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions played with positive probability

$$
\operatorname{supp}\left(x_{j}\right)=\left\{i_{j} \in\left[m_{j}\right]: x_{j, i_{j}}>0\right\}
$$

Support, best responses, and regret: $\operatorname{exampl}_{x_{21}} \operatorname{xin}_{22} p \operatorname{lil}_{x_{23}} x_{2,4}$

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\widehat{\boldsymbol{i}_{\boldsymbol{j}}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$

Regret
The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

$\boldsymbol{x}_{1,1}$		A	B	C	D
		1, 0, 2	$3,-1,2$	4,2,0	-2, 0, 1
$x_{1,2}$	M	-1,1,0	1, 2, 4	-1, 1, -1	0,1,2
$\boldsymbol{x}_{1,3}$	S	1, 2, - 2	0, 1, 3	1, -2, 3	2,2,0

	$\underset{\mathrm{A}}{x_{2,1}}$	$\underset{\mathrm{B}}{x_{2,2}}$	$\underset{\mathrm{C}}{x_{2,3}}$	$\underset{\mathrm{D}}{x_{2,4}}$
$x_{1,1}$ N	3,1,1	2,1,1	0, -1, 2	-3, 1, -1
$x_{1,2}$ M	$2,-1,1$	-2, 0, -2	2,0,1	0, -3, 2
$x_{1,3}$ S	-2, 0, 3	-1, 0, 2	$\begin{aligned} & -1,-1, \\ & -2 \end{aligned}$	1, -1, -2

Support, best responses, and regret: example

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{\boldsymbol { j } _ { \boldsymbol { j } }}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\widehat{\boldsymbol{i}_{\boldsymbol{j}}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions
played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$
Regret
The regret of Player j under a profile $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

$$
\begin{gathered}
\begin{array}{l}
\left\langle P_{1}, x_{-1}\right\rangle_{N}=2,
\end{array} \quad\left\langle P_{1}, x_{-1}\right\rangle_{M}=1 / 2, \quad\left\langle P_{1}, x_{-1}\right\rangle_{S}=-1 / 4 \\
\left\langle P_{2}, x_{-2}\right\rangle_{A}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{B}=0, \quad\left\langle P_{2}, x_{-2}\right\rangle_{C}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{D}=1 / 2 \\
\left\langle P_{3}, x_{-3}\right\rangle_{H}=1, \quad\left\langle P_{3}, x_{-3}\right\rangle_{L}=3 / 2 \\
\left\langle P_{1}, x_{1}, x_{2}, x_{3}\right\rangle=2 \cdot 1+1 / 2 \cdot 0-1 / 2 \cdot 0=2
\end{gathered}
$$

1 N
0 M

0 s

$1,0,2$	$3,-1,2$	$4,2,0$	$-2,0,1$
$-1,1,0$	$1,2,4$	$-1,1,-1$	$0,1,2$
$1,2,-2$	$0,1,3$	$1,-2,3$	$2,2,0$

H $1 / 2$

$$
\begin{array}{llll}
1 / 2 & 0 & 1 / 2 & 0
\end{array}
$$

1 N
0 M

0 s

$3,1,1$	$2,1,1$	$0,-1,2$	$-3,1,-1$
$2,-1,1$	$-2,0,-2$	$2,0,1$	$0,-3,2$
$-2,0,3$	$-1,0,2$	$-1,-1$, -2	$1,-1,-2$

1/2

Regret of Pl. $1=2-2=0, \quad$ Regret of PI. $2=1 / 2-1 / 2=0$, Regret of PI. $3=3 / 2-5 / 4=1 / 4$

Support, best responses, and regret: example

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\widehat{\boldsymbol{i}_{\boldsymbol{j}}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions
played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$
Regret
The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

\[

\]

Regret of PI.1 = 2-2 $=0$, Regret of PI. $2=1 / 2-1 / 2=0$, Regret of PI. $3=3 / 2-5 / 4=1 / 4$

Support, best responses, and regret: example

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\widehat{\boldsymbol{i}_{\boldsymbol{j}}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions
played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$
Regret
The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

$$
\begin{aligned}
& \begin{array}{l}
\left\langle P_{1}, x_{-1}\right\rangle_{N}=2, \\
\left\langle P_{2}, x_{-2}\right\rangle_{A}=1 / 2,
\end{array} \quad\left\langle P_{1}, x_{-1}\right\rangle_{M}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{B}=0, \quad\left\langle P_{1}, x_{-1}\right\rangle_{S}=-1 / 4 \\
& \left\langle P_{3}, x_{-2}\right\rangle_{C}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{D}=1 / 2 \\
& \left\langle P_{-3}\right\rangle_{H}=1, \quad\left\langle P_{3}, x_{-3}\right\rangle_{L}=3 / 2 \\
& \left\langle P_{2}, x_{1}, x_{2}, x_{3}\right\rangle=1 / 2 \cdot 1+1 / 2 \cdot 3 / 2=5 / 4
\end{aligned}
$$

$1 / 2$	$\begin{aligned} & 0 \\ & B \end{aligned}$	$1 / 2$	$\begin{aligned} & \mathbf{0} \\ & \mathrm{D} \end{aligned}$
1, 0, 2	3,-1, 2	4,2,0	-2, 0, 1
-1,1,0	1,2,4	-1, 1, -1	0,1,2
1, 2, -2	0, 1, 3	1, -2, 3	2,2,0

H 1/2

$$
\begin{array}{llll}
1 / 2 & 0 & 1 / 2 & 0
\end{array}
$$

1 N

0 M

0 s

$3,1,1$	$2,1,1$	$0,-1,2$	$-3,1,-1$
$2,-1,1$	$-2,0,-2$	$2,0,1$	$0,-3,2$
$-2,0,3$	$-1,0,2$	$-1,-1$, -2	$1,-1,-2$
$1 / 2$			

Regret of Pl. $1=2-2=0$, Regret of PI. $2=1 / 2-1 / 2=0$, Regret of PI. $3=3 / 2-5 / 4=1 / 4$

Nash equilibrium

Nash equilibrium
 A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

§equivalent to any of:

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
A strategy profile $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ in which every player is best-responding response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-j}\right\rangle_{\hat{i}_{j}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $j \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$

The support of every player $j \in[n]$ contains only pure best responses:

$$
\widehat{i_{j}} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\widehat{i_{j}}}=\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}
$$

Regret

The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

The regret of every player $j \in[n]$ is $\mathbf{0}$:

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle\boldsymbol{P}_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle=\mathbf{0}
$$

Nash equilibrium - existence

Nash equilibrium

A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

Theorem [Nash, 1951]

Every finite game (finitely many players, finitely many actions per player) has at least one Nash equilibrium

Best responses

Given a partial strategy profile $\boldsymbol{x}_{-\boldsymbol{j}}$ action $\widehat{\boldsymbol{i}_{\boldsymbol{j}}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]$ is a pure best
A strategy profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ in which every player is best-responding response if $\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\hat{\boldsymbol{i}}_{\boldsymbol{j}}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{i}_{\boldsymbol{j}}}\left\langle\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{x}_{-\boldsymbol{j}}\right\rangle_{\boldsymbol{i}_{\boldsymbol{j}}}$

Support

For some $\boldsymbol{j} \in[n]$, the support of a strategy $\boldsymbol{x}_{\boldsymbol{j}}$ is the subset of its actions played with positive probability $\operatorname{supp}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\left\{\boldsymbol{i}_{\boldsymbol{j}} \in\left[\boldsymbol{m}_{\boldsymbol{j}}\right]: \boldsymbol{x}_{\boldsymbol{j}, \boldsymbol{i}_{\boldsymbol{j}}}>\mathbf{0}\right\}$

Regret

The regret of Player j under a profile $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)$ is

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

The support of every player $j \in[n]$ contains only pure best responses:

$$
\widehat{i_{j}} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\widehat{i_{j}}}=\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}
$$

The regret of every player $j \in[n]$ is $\mathbf{0}$:

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle=0
$$

Nash equilibrium: example

A strategy profile $\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ in which every player is best-responding

The support of every player $j \in[n]$ contains only pure best responses:

$$
\widehat{i}_{j} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\hat{i}_{j}}=\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}
$$

The regret of every player $j \in[n]$ is $\mathbf{0}$:

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle=0
$$

$$
\left\langle P_{1}, x_{-1}\right\rangle_{N}=2, \quad\left\langle P_{1}, x_{-1}\right\rangle_{M}=1 / 2, \quad\left\langle P_{1}, x_{-1}\right\rangle_{S}=-1 / 4
$$

$$
\left\langle P_{2}, x_{-2}\right\rangle_{A}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{B}=0, \quad\left\langle P_{2}, x_{-2}\right\rangle_{C}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{D}=1 / 2
$$

$$
\left\langle P_{3}, x_{-3}\right\rangle_{H}=1, \quad\left\langle P_{3}, x_{-3}\right\rangle_{L}=3 / 2
$$

		$\underset{A}{1 / 2}$	$\begin{aligned} & \mathbf{0} \\ & \mathrm{B} \end{aligned}$	$1 / 2$	$\begin{gathered} \mathbf{0} \\ \mathrm{D} \end{gathered}$
1	N	1, 0, 2	3,-1, 2	4,2,0	-2, 0, 1
	M	-1, 1, 0	1,2,4	-1, 1, -1	0,1,2
0	S	1,2,-2	0,1,3	1, -2, 3	2,2,0
		H 1/2			
		$\underset{\mathrm{A}}{1 / 2}$	$\begin{aligned} & \mathbf{0} \\ & \mathrm{B} \end{aligned}$	$1 / 2$	$\begin{gathered} \mathbf{0} \\ \mathrm{D} \end{gathered}$
1	N	3, 1, 1	2,1,1	0, -1, 2	-3, 1, -1
0	M	$2,-1,1$	-2, 0, -2	2, 0,1	$0,-3,2$
0	S	-2, 0, 3	-1, 0, 2	$-1,-1$, -2	1, -1, -2

$$
\operatorname{supp}\left(x_{1}\right)=\{N\}, \quad \operatorname{supp}\left(x_{2}\right)=\{A, C\}, \quad \operatorname{supp}\left(x_{3}\right)=\{H, L\}
$$

Regret of PI. $1=2-2=0$, Regret of PI. $2=1 / 2-1 / 2=0$, Regret of PI. $3=3 / 2-5 / 4$

Nash equilibrium: example

```
A strategy profile \(\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)\) in which every player is best-responding
```

The support of every player $j \in[n]$ contains only pure best responses:

$$
\widehat{i_{j}} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\widehat{i_{j}}}=\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}
$$

The regret of every player $j \in[n]$ is $\mathbf{0}$:

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle=0
$$

$$
\left\langle P_{1}, x_{-1}\right\rangle_{M}=1 / 2, \quad\left\langle P_{1}, x_{-1}\right\rangle_{S}=-1 / 3
$$

$$
\left\langle P_{2}, x_{-2}\right\rangle_{A}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{B}=0, \quad\left\langle P_{2}, x_{-2}\right\rangle_{C}=1 / 2, \quad\left\langle P_{2}, x_{-2}\right\rangle_{D}=1 / 2
$$

$$
\left\langle P_{3}, x_{-3}\right\rangle_{H}=4 / 3, \quad\left\langle P_{3}, x_{-3}\right\rangle_{L}=4 / 3
$$

$$
\operatorname{supp}\left(x_{1}\right)=\{N\}, \quad \operatorname{supp}\left(x_{2}\right)=\{A, C\}, \quad \operatorname{supp}\left(x_{3}\right)=\{H, L\}
$$

$\mathbf{1}$	N	$3,1,1$	$2,1,1$	$0,-1,2$	$-3,1,-1$
$\mathbf{0}$	M	$2,-1,1$	$-2,0,-2$	$2,0,1$	$0,-3,2$
$\mathbf{0}$	S	$-2,0,3$	$-1,0,2$	$-1,-1$, -2	$1,-1,-2$

Regret of PI. $1=2-2=0$, Regret of PI. $2=1 / 2-1 / 2=0$, Regret of PI. $3=4 / 3-4 / 3=0$

Notions of approximate Nash equilibria

Nash equilibrium

A strategy profile in which no player can gain more expected payoff by unilaterally changing her strategy

The support of every player $j \in[n]$ contains only pure best responses:

$$
\widehat{i_{j}} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\widehat{i_{j}}}=\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}
$$

The regret of every player $j \in[n]$ is $\mathbf{0}$:

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle=0
$$

ε-Well-Supported Nash equilibrium (ε-WSNE) $\Longrightarrow \varepsilon$-Nash equilibrium (ε-NE)

The support of every player $j \in[n]$ contains only ε-best responses:
$\widehat{i_{j}} \in \operatorname{supp}\left(x_{j}\right) \Longrightarrow\left\langle P_{j}, x_{-j}\right\rangle_{\hat{i}_{j}} \geq \max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\varepsilon$

The regret of every player $j \in[n]$ is at most ε :

$$
\max _{i_{j}}\left\langle P_{j}, x_{-j}\right\rangle_{i_{j}}-\left\langle P_{j}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle \leq \varepsilon
$$

$$
0-\text { WSNE }=0-\text { NE }=\text { (exact) Nash equilibrium }
$$

Normalization: w.l.o.g. all payoffs in $[\mathbf{0}, 1] \longrightarrow \varepsilon \in[0,1]$

Normal-form games: special families ($n \geq 2$)

- Zero-sum (constant-sum): the payoffs in each action profile sum to a fixed number

- Symmetric: all players have the same action set, and for every action profile $a=\left(a_{1}, \ldots, a_{n}\right)$ and every perturbation $\pi:[n] \rightarrow[n]$ we have

$$
U_{j}\left(a_{1}, \ldots, a_{n}\right)=U_{\pi^{-1}(j)}\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)
$$

	0		1		-1
0		-1		1	
	-1		0		1
1		0		-1	
	1		-1		0
-1		1		0	

* Find a symmetric Nash equilibrium ($\boldsymbol{s}, \boldsymbol{s}, \ldots, \boldsymbol{s}$) (there always exists one in symmetric games [a])

Normal-form games: special families ($n \geq 2$)

- Win-lose: payoffs in $\{0,1\}$
- Coordination: identical payoff tensors for all players

Normal-form games: Algorithms and Complexity

Computing pure vs computing mixed Nash equilibria

Pure Nash equilibrium (PNE)

An action profile in which no player can gain more payoff by unilaterally changing her action

* Problem: Given a normal-form game, find a PNE (if it exists) or decide non-existence
$>$ What is the complexity?
\checkmark Poly-time in the input size!
- For every action profile $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$:
- Pick $j \in[n]$ and check if any of her $m-1$ alternatives gives higher payoff: $n(m-1)$ comparisons for each of the m^{n} profiles
n players:
Action profiles described by an $\boldsymbol{m}_{\mathbf{1}} \times \boldsymbol{m}_{\mathbf{2}} \times \cdots \times \boldsymbol{m}_{\boldsymbol{n}}$ tensor

Input (n-player \boldsymbol{m}-action game):
$\boldsymbol{n} \cdot \boldsymbol{m}^{\boldsymbol{n}}$ payoff entries

We will focus on computing (approximate) mixed Nash equilibria

Hardness results for $n \geq 3$

- Zero-sum (constant-sum): the payoffs in each action profile sum to a fixed number
> PPAD-complete
\checkmark By reduction from 2-player games: add a "dummy player" that makes payoffs sum to zero
* Recall from Argy's talk: 2-player zero-sum games are poly-time solvable!

Hardness results for $n \geq 3$

- Symmetric: all players have the same action set, and for every action profile $a=\left(a_{1}, \ldots, a_{n}\right)$ and every perturbation $\pi:[n] \rightarrow[n]$ we have

$$
U_{j}\left(a_{1}, \ldots, a_{n}\right)=U_{\pi^{-1}(j)}\left(a_{\pi(1)}, \ldots, a_{\pi(n)}\right)
$$

	$\mathbf{0}$		$\mathbf{1}$		-1
0		-1		1	
	$\mathbf{- 1}$		$\mathbf{0}$		$\mathbf{1}$
1		0		-1	
	$\mathbf{1}$		$\mathbf{- 1}$		$\mathbf{0}$
-1		1		0	

* Find a symmetric Nash equilibrium ($\boldsymbol{s}, \boldsymbol{s}, \ldots, \boldsymbol{s}$) (there always exists one in symmetric games [a])

PPAD-complete

\checkmark Reduce from previous 3-player (zerosum) game to a 3-player symmetric game [b]

* Open problem: What is the complexity of finding any (also non-symmetric) Nash equilibrium in a symmetric game?

Hardness results for $n \geq 3$

- Win-lose: payoffs in $\{0,1\}$
> PPAD-complete
\checkmark Even 2-player win-lose games are PPADcomplete, for $\varepsilon=1 / \operatorname{poly}(m)$ [a] (recall Argy's talk)

Do we have any "good" algorithms? For what ε ?

Algorithms for $n \geq 3$

recall from Argy's talk

Algorithms for NE - support enumeration

In principle, it can be used for \boldsymbol{n}-player games

(x, y) is an NE iff
$\hat{\imath} \in \operatorname{supp}(x) \Rightarrow(\boldsymbol{R y})_{i}=\max _{i}(\boldsymbol{R y})_{i}$
$\hat{\boldsymbol{\jmath}} \in \operatorname{supp}(y) \Rightarrow\left(C^{T} \boldsymbol{x}\right)_{\hat{\jmath}}=\max _{j}\left(C^{T} x\right)_{j}$

For each possible support \boldsymbol{S} of Row player and each possible support \boldsymbol{T} of Col player check if the linear system above has a
feasible solution

$(\boldsymbol{R} \boldsymbol{y})_{i}=(\boldsymbol{R} \boldsymbol{y})_{i}$ for every $\boldsymbol{i}, \hat{\boldsymbol{\imath}}$ in \boldsymbol{S}
$(\boldsymbol{R y})_{i} \geq(R y)_{i}$ for every $\boldsymbol{i} \in \boldsymbol{S}$ and $\hat{\boldsymbol{i}} \notin S$
$\sum_{i} x_{i}=1$
$\boldsymbol{x}_{i}>\mathbf{0}$ for every $i \in S$
$\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$ for every $\boldsymbol{i} \notin \boldsymbol{S}$
$\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\boldsymbol{j}}=\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{\hat{j}}$ for every $\boldsymbol{i}, \hat{\imath}$ in \boldsymbol{T}
$\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{j} \geq\left(\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right)_{j}$ for every $\boldsymbol{j} \in \boldsymbol{T}$ and $\hat{\boldsymbol{j}} \notin \boldsymbol{T}$
$\sum_{j} y_{j}=1$
$\boldsymbol{y}_{j}>\mathbf{0}$ for every $\mathbf{j} \in \boldsymbol{T}$
$\boldsymbol{y}_{\boldsymbol{j}}=\mathbf{0}$ for every $\boldsymbol{j} \notin \boldsymbol{T}$

Every combination of sets corresponds to a feasibility problem that involves linear equations/inequalities

Every combination of sets corresponds to a feasibility problem that involves multilinear polynomial equations/inequalities of degree \boldsymbol{n} - $\mathbf{1}$

Algorithms for $n \geq 3$

Extended for \boldsymbol{n}-player games
 [a], [b]

Algorithms for $n \geq 3$: Quasi-PTAS

recall from Argy's talk

A QPTAS for ϵ-NE

We can find an ϵ-NE in $n^{O\left(\frac{\log n}{\epsilon^{2}}\right)}$ time [29]

There always exists an ϵ-NE with support size $\log n / \epsilon^{2}$

- Take any pair of strategies (x, y)
- Randomly sample $\log n / \epsilon^{2}$ pure strategies
- Play the sampled strategies uniformly
- The resulting payoffs will be within ϵ of the originals w.h.p.

Works also for \boldsymbol{n}-player games

[a], [b]
It gives a QPTAS:

$$
m^{o\left(n \cdot \frac{\log n+\log m-\log \varepsilon}{\varepsilon^{2}}\right)}
$$

By [c], even for 2-player games, there is a constant $\varepsilon>0$ such that any algorithm requires time

$$
m^{O\left(\log ^{1-o(1)} m\right)}
$$

unless ETH for PPAD is false
[a] Playing large games using simple strategies. Lipton, Markakis, Mehta. 2003
[b] Empirical Distribution of Equilibrium and its Testing Application. Babichenko, Barman, Peretz. 2013
[c] Settling the complexity of computing approximate two-player Nash equilibria. Rubinstein. 2016

Algorithms for $n \geq 3$: Poly-time

recall from Argy's talk

For 2-player games, there is a poly-time algorithm that finds a $\left(\frac{\mathbf{1}}{3}+\boldsymbol{\delta}\right)$-NE for any $\delta>0$. [a]

For 2-player games, there is a poly-time algorithm that finds a $\left(\frac{1}{2}+\boldsymbol{\delta}\right)$-WSNE for any $\delta>0$. [c]

Extension to \boldsymbol{n}-player games:

By [b], if we have a poly-time algorithm that finds an ε_{k}-NE in any k-player game, then we can compute in poly-time an ε_{k+1}-NE for any $(k+1)$-player game, where $\varepsilon_{k+1}=\frac{1}{2-\varepsilon_{k}}$

$$
\begin{aligned}
& \text { 3-player games: }\left(\frac{3}{5}+\delta\right) \text {-NE } \\
& \text { 4-player games: }\left(\frac{5}{7}+\delta\right) \text { - } \mathrm{NE} \\
& \vdots
\end{aligned}
$$

[a] A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022
[b] New algorithms for approximate Nash equilibria in bimatrix games. Bosse, Byrka, Markakis. 2010
[c] A Polynomial-Time Algorithm for 1/2-Well-Supported Nash
Equilibria in Bimatrix Games. Deligkas, Fasoulakis, Markakis. 2022

Hardness of computing constrained Nash equilibria

```
recall from Argy's talk
```


Complexity of constrained Nash equilibria

```
Complexity Crash Course
NP-complete
YES/NO problems
Verify in polynomial time any
solution of the given problem
Polynomial-time algorithm is
unlikely for NP-complete problems
maxi}(Ry)\mp@subsup{)}{i}{}-\mp@subsup{x}{}{T}Ry=
max}\mp@subsup{|}{j}{}(\mp@subsup{C}{}{T}x\mp@subsup{)}{j}{}-\mp@subsup{\boldsymbol{x}}{}{T}Cy=
Problem definition
    Is there an \epsilon-NE (x,y) such that min(\mp@subsup{\mathbf{x}}{}{T}R\mathbf{y},\mp@subsup{\mathbf{x}}{}{T}C\mathbf{y})\gequ\mathrm{ ?}
    Is there an }\epsilon-\textrm{NE}(\mathbf{x},\mathbf{y})\mathrm{ with supp (x) }\subseteqS\mathrm{ ?
    Are there two }\epsilon\mathrm{ -NE with TV distance }\geqd\mathrm{ ?
Is there an \epsilon-NE (x,y) with max }\mp@subsup{\boldsymbol{x}}{i}{}\mp@subsup{\mathbf{x}}{i}{}\leqp\mathrm{ ?
Is there an \epsilon-NE (x,y) such that \mp@subsup{\mathbf{x}}{}{T}R\mathbf{y}+\mp@subsup{\mathbf{x}}{}{T}C\mathbf{y}\leqv\mathrm{ ?}
Is there an }\epsilon\mathrm{ -NE (x,y) such that }\mp@subsup{\mathbf{x}}{}{T}R\mathbf{y}\lequ\mathrm{ ?
Is there an \epsilon-WSNE (x,y) such that |supp(\mathbf{x})|+|\operatorname{supp}(\mathbf{y})|\geq2k
Is there an }\epsilon-\operatorname{WSNE}(\mathbf{x},\mathbf{y})\mathrm{ such that min{|supp(x)|, |supp(y)|} }\geqk\mathrm{ ?
Is there an \epsilon-WSNE (x,y) such that |supp(\mathbf{x})|\geqk
Is there an \epsilon-WSNE (\mathbf{x,y)}\mathrm{ with }\mp@subsup{S}{R}{}\subseteq\operatorname{supp}(\mathbf{x})\mathrm{ ?}
```

(4) Nash and correlated equilibria Some complexity considerations. Gillboa, Zemel [5] New complexity results about Nash equilibria. Conitzer, Sandholm b) The complexity of Computational Problems about Nash Equilibria in Symmetric Win-Lose Games. Bilo, Mavronicolas

```
It is NP-hard to decide whether a bimatrix game possesses
```

It is NP-hard to decide whether a bimatrix game possesses
an exact NE that satisfies any of the constraints above even for
an exact NE that satisfies any of the constraints above even for
symmetric win-lose games [4], [5], [6]

```
symmetric win-lose games [4], [5], [6]
```

Implies NP-completeness for n-player games ($n \geq 3$): add "dummy" players to the 2-player game

Is there an "efficient" algorithm for constrained Nash equilibria?

An algorithm for computing constrained Nash equilibria

A QPTAS for computing constrained Nash equilibria:
Given an \boldsymbol{n}-player game with

- at most \boldsymbol{m} actions per player
- \boldsymbol{k} many constraints written as equalities/inequalities of polynomials with maximum degree d
there is an algorithm that either finds an ε-constrained ε-NE in time

The constrained problems at hand can be written as polynomial (in)equalities

By [b], even for 2-player games, for any $\varepsilon<1 / 8$, any algorithm requires time

$$
m^{O(\log m)}
$$

unless ETH for 3SAT is false
or answers that there is no 0-constrained 0-NE [a]
So, for constant n, d and ε, this algorithm is asymptotically tight!

An intermission for exact Nash equilibria

Even for 3-player games:

- finding an exact NE (i.e. 0-NE) is FIXP-complete [a]
- deciding existence of a constrained exact NE is ETR-complete [b], [c], [d], [e] even for symmetric games or zero-sum games
> FIXP contains the Sum-Of-Squares problem: not even known to be in NP [a]
$>N P \subseteq E T R \subseteq$ PSPACE $[f]$

$$
\text { a.k.a. } \exists \mathbb{R}
$$

[a] On the Complexity of Nash Equilibria and Other Fixed Points. Etessami, Yannakakis. 2010
[b] Fixed points, Nash equilibria, and the existential theory of the reals. Schaefer, Štefankovic. 2017
[c] $\exists R$-Completeness for Decision Versions of Multi-Player (Symmetric)
Nash Equilibria. Garg, Mehta, Vazirani, Yazdanbod. 2018
[d] ETR-complete decision problems about (symmetric) Nash
equilibria in (symmetric) multi-player games. Bilò, Mavronicolas. 2017
[e] On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria. Berthelsen, Hansen. 2022
[f] Some algebraic and geometric computations in PSPACE. Canny. 1988

Graphical games: Definitions

Graphical games ${ }_{[\text {[a] }}$

Directed graph $G=(V, E)$

- V : player set $\longrightarrow|V|=n$
- E : captures interactions

Player $\boldsymbol{j} \in[\boldsymbol{n}]$ participates in game with her in-neighbours

Graphical games ${ }_{\text {[a] }}$

Directed graph $G=(V, E)$

- V : player set $\longrightarrow|V|=n$
- E : captures interactions

Player $\boldsymbol{j} \in[\boldsymbol{n}]$ participates in game with her in-neighbours

Input (\boldsymbol{m}-action, \boldsymbol{d}-in-degree): $\quad n \cdot m^{d+1}$ payoff entries
(succinct representation)

Class of graphical games: polymatrix ${ }_{[a]}$

Undirected graph $G=(V, E)$

- V : player set $\longrightarrow|V|=n$
- E : captures pairwise interactions

Player $\boldsymbol{j} \in[\boldsymbol{n}]$ participates in bimatrix games, one with each of her neighbours

Class of graphical games: polymatrix ${ }_{[a]}$

Undirected graph $G=(V, E)$

- V : player set $\longrightarrow|V|=n$
- E : captures pairwise interactions

Player $\boldsymbol{j} \in[n]$ participates in bimatrix games, one with each of her neighbours

- j's payoff: sum of bimatrix games payoffs

Input (\boldsymbol{m}-action, \boldsymbol{d}-degree): $\boldsymbol{n} \cdot \boldsymbol{d} \cdot \boldsymbol{m}^{2}$ payoff entries
(succinct representation)

Polymatrix games:
 Algorithms and Complexity

Hardness results for polymatrix

- Polymatrix games:

PPAD-complete [a], [b], [c]
END-OF-LINE \leq_{p} DISCRETE-BROUWER \leq_{p} GENERALIZED-CIRCUIT \leq_{p}

$$
\leq_{p} \varepsilon \text {-WSNE-POLYMATRIX } \leq_{p} \varepsilon \text {-NE-POLYMATRIX } \leq_{p} 2 \text {-NASH }
$$

In fact:

$\checkmark \boldsymbol{\varepsilon}=1 / \exp (\mathrm{N})$ [a]
$\checkmark \varepsilon=1 / \operatorname{poly}(\mathrm{N}) \quad[\mathrm{b}]$
$\checkmark \boldsymbol{\varepsilon}=$ const (of the order 10^{-8}) [c]

- even for 2-action, degree-3, bipartite graphs

Hardness results for polymatrix

- Polymatrix games:

> PPAD-complete [a], [b], [c]
END-OF-LINE \leq_{p} DISCRETE-BROUWER \leq_{p} GENERALIZED-CIRCUIT \leq_{p}

$$
\leq_{p} \varepsilon \text {-WSNE-POLYMATRIX } \leq_{p} \varepsilon-\text { NE-POLYMATRIX } \leq_{p} 2 \text {-NASH }
$$

In fact:

$\checkmark \boldsymbol{\varepsilon}=1 / \exp (\mathrm{N})$ [a]
$\checkmark \varepsilon=1 / \operatorname{poly}(\mathrm{N})$ [b]
$\checkmark \boldsymbol{\varepsilon}=$ const (of the order 10^{-8}) [c]

- even for 2-action, degree-3, bipartite graphs
> PPAD-complete: poly-time reduction since actions and degree are constant

[^0]
Hardness results for polymatrix

- Finding an NE in polymatrix games with zero-sum and coordination games on the edges is PPAD-complete [a]

Group-wise zero-sum polymatrix games
$>$ Partition the players into groups
> Players in the same group play a coordination game
> Players in different groups play zero-sum games

- Group-wise zero-sum games are PPAD-complete even with three groups of players [a]
* Open problem: Group-wise zero-sum with two groups?

Hardness results for polymatrix

Coordination-only polymatrix games [a]
$>$ Find a pure Nash equilibrim: PLS-complete
> Find a mixed Nash equilibrim: in PLS \cap PPAD

* Open problem: Complexity of (mixed) NE

Hardness results: constrained NE in polymatrix

It is NP-complete to decide whether there is a strategy profile with sum of payoffs \boldsymbol{u} even in polymatrix games with:

- degree 3, bipartite, planar graph
- at most 3 actions per player [a]

For any $\varepsilon \in[0,1]$, it is NP-complete to decide whether a polymatrix game has an ε-NE with sum of payoffs \boldsymbol{u} [a]

For any $\varepsilon \in(0,1)$, it is NP-complete to decide whether a polymatrix game possesses a constrained ε-WSNE. This holds even for polymatrix games with:

- degree 3, bipartite, planar graph
- at most 7 actions per player [a]

Algorithms for polymatrix

$$
\left(\frac{1}{2}+\delta\right) \text {-NE of a polymatrix game can be found in time poly }\left(N, \frac{1}{\delta}\right) \text {, for any } \delta>0 \text { [a] }
$$

Graph classes:

Paths with two actions: polynomial time [e]
Cycles with two actions: polynomial time [e]
> Trees with constant actions
QPTAS [f]
FPTAS [g]
Bounded treewidth: QPTAS [d]
All QPTASs results use the same underlying principle as [b], [c]
[a] Computing Approximate Nash Equilibria of Polymatrix Games. Deligkas, Fearnley, Savani, Spirakis. 2014
[b] Playing large games using simple strategies. Lipton, Markakis, Mehta. 2003
[c] Approximating the existential theory of the reals. Deligkas, Fearnley, Melissourgos, Spirakis. 2018
[d] Computing Constrained Approximate Equilibria in Polymatrix Games Deligkas, Fearnley, Savani. 2017
[e] Nash equilibria in graphical games on trees revisited. Elkind, Goldberg, Goldberg. 2006
[f] Approximating Nash equilibria in tree polymatrix games. Barman, Ligett, Piliouras. 2016
[g] Tractable algorithms for approximate Nash equilibria in generalized graphical games with tree structure. Ortiz, Irfan. 2017
[h] On the Approximation of Nash Equilibria in Sparse Win-Lose MultiPlayer Games. Liu, Li, Deng. 2021
[i] Tree polymatrix games are PPAD-hard. Deligkas, Fearnley, Savani. 2020

Graphical/polymatrix games: Recent tight results

A new tool to show PPAD-hardness

The Pure-Circuit problem [a]:

Input: A Boolean circuit, with a twist:

- The circuit can have cycles
- Nodes take values in $\{\mathbf{0}, \mathbf{1}, \perp\}$, instead of just $\{0,1\}$
- In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Goal: Assign a value (in $\{0,1, \perp\}$) to each node, such that all gates are "satisfied"

Pure-Circuit is PPAD-complete [a]

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

NOT gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

Pure-Circuit: a new tool to show PPAD-hardness

AND gate:

(with robustness!)

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

at least one in $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

PURIFY gate:

Pure-Circuit: a new tool to show PPAD-hardness

Pure-Circuit gates:

NOT gate

AND gate

u	v	w
0	0	0
1	1	1
\perp	At least one	
\perp	output in $\{0,1\}$	

PURIFY gate

Pure-Circuit: a new tool to show PPAD-hardness

1. The circuit can have cycles

Pure-Circuit: a new tool to show PPAD-hardness

1. The circuit can have cycles

Pure-Circuit: a new tool to show PPAD-hardness

1. The circuit can have cycles

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

2. Nodes take values in $\{0,1, \perp\}$, instead of just $\{0,1\}$

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Pure-Circuit: a new tool to show PPAD-hardness

3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Stronger hardness results for ε-WSNE in polymatrix

- Polymatrix games:

PPAD-complete

GENERALIZED-CTRCUIT $\leq_{p} \varepsilon$-WSNE-POLYMATRIX
PURE-CIRCUIT $\leq_{p} \varepsilon$-WSNE-POLYMATRIX

$$
\begin{aligned}
& \checkmark \varepsilon=1 / \exp (\mathrm{N})[\mathrm{a}] \\
& \checkmark \quad \varepsilon=1 / \operatorname{poly}(\mathrm{N}) \quad[\mathrm{b}] \\
& \checkmark \quad \varepsilon=\text { const } \quad\left(\text { of the order } 10^{-8}\right) \text { [c] }
\end{aligned}
$$

- even for 2-action polymatrix on bipartite graphs
aven for 2-action, degree-3, bipartite graphs

Idea:

- replace each vertex of the Pure-Circuit graph by a player
- The player has 2 actions zero, one and his payoffs simulate the function of the corresponding gates
- zero = 0, one =1, mix =
[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008
[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009
[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014
[d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

A simple algorithm for $1 / 3-$ WSNE in 2 -action polymatrix

1/3-WSNE algorithm for 2-action polymatrix games [a]:

1. Find a player such that one of its two actions is always a $1 / 3$-best-response (no matter what the other players play). Fix the player's strategy to that action, and remove the player from the game.
2. Repeat Step 1 until no such player exists anymore.
3. For the remaining players, have them mix uniformly between their two actions, i.e., have them play $\left(\frac{1}{2}, \frac{1}{2}\right)$.
\rightarrow Can show that this always yields a $1 / 3-$ WSNE (by a simple direct computation)

$$
\text { PPAD/P dichotomy at } \varepsilon=1 / 3
$$

* Open problem: At what ε is there a dichotomy for 3 -action polymatrix ε-WSNE? What about more actions?

Stronger hardness results for ε-NE in polymatrix

- Polymatrix games:

> PPAD-complete
GENERALIZED-CIRCUIT $\leq_{p} \varepsilon$-NE-POLYMATRIX
PURE-CIRCUIT $\leq_{p} \varepsilon$-NE-POLYMATRIX

$$
\begin{aligned}
& \checkmark \quad \varepsilon=1 / \exp (\mathrm{N}) \text { [a] } \\
& \checkmark \quad \varepsilon=1 / \operatorname{poly}(\mathrm{N}) \text { [b] } \\
& \checkmark \quad \varepsilon=\text { const (of the order } 10^{-8} \text {) [c] } \\
& \quad \circ \text { even for 2-action polymatrix on bipartite graphs } \\
& \checkmark \quad \varepsilon<\mathbf{0 . 0 8 8} \text { [d] } \\
& \\
& \quad \circ \text { even for 2-action, degree-3, bipartite graphs }
\end{aligned}
$$

[a] The complexity of computing a Nash equilibrium. Daskalakis, Goldberg, Papadimitriou. 2008
[b] Settling the complexity of computing two-player Nash equilibria. Chen, Deng, Teng. 2009
[c] Inapproximability of Nash Equilibrium. Rubinstein. 2014
[d] Pure-Circuit: Strong Inapproximability for PPAD. Deligkas, Fearnley, Hollender, Melissourgos. 2022

A simple algorithm for $1 / 5-\mathrm{NE}$ in 2-action polymatrix

1/5-NE algorithm for 2-action polymatrix games:

1. Find a player such that one of its two actions is always a $\mathbf{1} / \mathbf{5}$-best-response (no matter what the other players play). Fix the player's strategy to that action, and remove the player from the game.
2. Repeat Step 1 until no such player exists anymore.
3. For the remaining players, have them mix uniformly between their two actions, i.e., have them play $\left(\frac{1}{2}, \frac{1}{2}\right)$.
\rightarrow Can show that this always yields a $\mathbf{1} / \mathbf{5}-\mathrm{NE}$ (by a simple direct computation)

There is a gap in $\varepsilon: 0.088-0.2$

* Open problem: Can we close this gap?

Tight hardness results for ε-WSNE / ε-NE in graphical

- Graphical games:

PPAD-complete
GENLRALIZED-CINCUIT $\leq_{p} \varepsilon$-WSNE-GRAPHICAL
GENEPA낟ㄷ-CIRCUTT $\leq_{p} \varepsilon$-NE-GRAPHICAL

PURE-CIRCUIT $\leq_{p} \varepsilon$-WSNE-GRAPHICAL
 PURE-CIRCUIT $\leq_{p} \varepsilon$-NE-GRAPHICAL

$\checkmark \varepsilon=1 / \exp (\mathrm{N})[\mathrm{a}]$
$\checkmark \varepsilon=1 / \operatorname{poly}(\mathrm{N}) \quad[\mathrm{b}]$
$\checkmark \varepsilon=$ const (of the order 10^{-8}) [c]

- even for 2-action polymatrix on bipartite graphs
$\checkmark \varepsilon<\mathbf{1}$ for ε-WSNE [d] - Any profile is 1-WSNE
$\checkmark \varepsilon<\mathbf{1} / \mathbf{2}$ for ε-NE [d] - 2-action games: every player $\left(\frac{1}{2}, \frac{1}{2}\right)$ is a $1 / 2-\mathrm{NE}$

Idea:

- Similar idea to polymatrix - different encod PPAD/P dichotomy at - $\varepsilon=1$ for WSNE
- $\varepsilon=1 / 2$ for NE
* Open problem: At what ε is there a dichotomy for 3 -action graphical ε-NE? What about more actions?

Discussion

* Close the gaps of approximability-inapproximability
* Find new meaningful classes of instances that admit "efficient" algorithms

Thank you!

[^0]: [c] Inapproximability of Nash Equilibrium. Rubinstein. 2014

